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Comparing Automatic Eye Tracking and Manual Gaze Coding
Methods in Young Children with Autism Spectrum Disorder
Courtney E. Venker , Ron Pomper, Tristan Mahr, Jan Edwards, Jenny Saffran, and Susan Ellis Weismer

Eye-gaze methods offer numerous advantages for studying cognitive processes in children with autism spectrum disorder
(ASD), but data loss may threaten the validity and generalizability of results. Some eye-gaze systems may be more vulnera-
ble to data loss than others, but to our knowledge, this issue has not been empirically investigated. In the current study,
we asked whether automatic eye-tracking and manual gaze coding produce different rates of data loss or different results
in a group of 51 toddlers with ASD. Data from both systems were gathered (from the same children) simultaneously, dur-
ing the same experimental sessions. As predicted, manual gaze coding produced significantly less data loss than automatic
eye tracking, as indicated by the number of usable trials and the proportion of looks to the images per trial. In addition,
automatic eye-tracking and manual gaze coding produced different patterns of results, suggesting that the eye-gaze system
used to address a particular research question could alter a study’s findings and the scientific conclusions that follow. It is
our hope that the information from this and future methodological studies will help researchers to select the eye-gaze
measurement system that best fits their research questions and target population, as well as help consumers of autism
research to interpret the findings from studies that utilize eye-gaze methods with children with ASD. Autism Res 2020,
13: 271–283. © 2019 International Society for Autism Research, Wiley Periodicals, Inc.

Lay Summary: The current study found that automatic eye-tracking and manual gaze coding produced different rates of data
loss and different overall patterns of results in young children with ASD. These findings show that the choice of eye-gaze sys-
temmay impact the findings of a study—important information for both researchers and consumers of autism research.
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Introduction

Eye-gaze methods—including automatic eye-tracking and
manual coding of eye gaze—have been widely used to
investigate real-time cognitive, linguistic, and attentional
processes in infants and young children [Aslin, 2007, 2012;
Fernald, Zangl, Portillo, & Marchman, 2008; Oakes,
2012]. Eye-gaze methodology has also become increasingly
popular in studies of children with autism spectrum disor-
der (ASD) in recent years [Chita-Tegmark, Arunachalam,
Nelson, & Tager-Flusberg, 2015; Falck-Ytter, Bölte, &
Gredebäck, 2013; Kaldy, Kraper, Carter, & Blaser, 2011;
Potrzeba, Fein, & Naigles, 2015; Swensen, Kelley, Fein, &
Naigles, 2007]. Eye-gaze techniques offer advantages in
autism research because they provide a window into com-
plex cognitive processes simply by measuring participants’
gaze to visual stimuli on a screen. Furthermore, they have
limited behavioral response demands, do not require social

interaction, and are appropriate for participants with a wide
range of ages, cognitive skills, and language abilities.

Given the growing popularity of eye-gaze methods in
autism research, it is important to consider methodologi-
cal issues that may impact the data from which we draw
our inferences [Nyström, Andersson, Holmqvist, & van
de Weijer, 2013; Oakes, 2012; Venker & Kover, 2015;
Wass, Forssman, & Leppänen, 2014; Wass, Smith, &
Johnson, 2013]. For example, eye-gaze methods are vul-
nerable to data loss—periods of time in which partici-
pants’ gaze is not (or appears not to be) directed to the
stimuli of interest. Data loss is problematic because it can
threaten the validity of dependent variables, diminish
statistical power, limit the generalizability of findings,
and produce inaccurate results [Wass et al., 2014]. In
addition, limiting data loss will increase the likelihood of
attaining rigorous and reproducible results, as empha-
sized by the National Institutes of Health [Collins &
Tabak, 2014]. Though a certain amount of data loss is
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unavoidable, some eye-gaze systems may be more vulner-
able to data loss than others and different systems may
even produce different patterns of results. In the current
study, we investigated these issues by directly comparing
data gathered from young children with ASD using two
different eye-gaze systems—automatic eye tracking and
manual gaze coding.
Studies of children with ASD typically measure gaze loca-

tion using one of two systems: automatic eyetracking or
manual coding of eye gaze from video. Both eye-gaze sys-
tems determine where children are looking, but they do so
in different ways. Automatic eye trackers determine gaze
location using a light source—usually near-infrared lights—
to create corneal reflections that are recorded by cameras
within the eye tracker (Tobii Technology, Stockholm, Swe-
den). Gaze location is based on three pieces of information:
corneal reflection, pupil position, and location of the partic-
ipant’s head relative to the screen [Wass et al., 2014]. Cali-
bration is required to maximize the accuracy of gaze
location measurements [Nyström et al., 2013], and
processing algorithms are applied to the raw gaze coordi-
nates to map gaze locations to areas of interest (AOIs) on
the screen. Eye-tracking methods based on corneal reflec-
tion have been used to measure gaze location for decades
(see Karatekin, 2007, for a historical review). Tobii Technol-
ogy AB (2012) describes a test specification for validating
the spatial measurements of eye-tracking devices. These
tests quantify the accuracy and precision of gaze measure-
ments by having viewers (and artificial eyes) fixate on
known screen locations under various viewing conditions.
Timing measurements can also be validated by comparing
an eye tracker’s output to a video recording [e.g., Morgante,
Zolfaghari, & Johnson, 2012].
Although some eye trackers involve head-mounted

equipment, we focus here on remote eye trackers because
they do not require physical contact with the equipment
and therefore are more appropriate for young children
with ASD [Falck-Ytter et al., 2013; Venker & Kover,
2015]. Remote eye trackers are robust to a certain degree of
head movement, but they require some information about
the location of the child’s head in 3D space. Thus, chil-
dren’s heads must remain within a 3D “track box” in order
to determine gaze location. For example, the eye tracker
used in the current study—the Tobii X2-60—allows for
head movements of 50 cm (width) × 36 cm (height), with
the participant positioned between 45 and 90 cm from the
eye tracker (Tobii Technology, Stockholm, Sweden).
Manual gaze-coding systems determine gaze location

quite differently from automatic eye tracking. In manual
gaze coding, human coders view a video of the child’s
face that was recorded during the experiment [Fernald
et al., 2008; Naigles & Tovar, 2012]. Coders determine
gaze location for each time frame, based on the visual
angle of children’s eyes and the known location of AOIs
on the screen. Coders must complete a comprehensive

training process prior to coding independently [Fernald
et al., 2008; Naigles & Tovar, 2012; Venker & Kover,
2015]. As with other types of behavioral coding, coders
also need to participate in periodic lab-wide reliability
checks to prevent drift from the original training proce-
dures over time [Yoder, Lloyd, & Symons, 2018]. It is cus-
tomary for studies using manual gaze coding to report
inter-coder agreement for a subset of videos that were
coded independently by two different coders [Fernald
et al., 2008; Naigles & Tovar, 2012].

Because of its automated approach, eye tracking offers
several advantages over manual gaze coding. It is objec-
tive, efficient, and has relatively high temporal and spa-
tial resolution [Dalrymple, Manner, Harmelink, Teska, &
Elison, 2018; Hessels, Andersson, Hooge, Nyström, &
Kemner, 2015]. Manual gaze coding, on the other hand,
is subjective, requires extensive reliability training, is
labor-intensive (e.g., about 1 hr for a 5-min video), and
has more limited spatial and temporal resolution [Aslin &
McMurray, 2004; Wass et al., 2013]. As a result of its
increased temporal and spatial precision, automatic eye
tracking is capable of capturing certain dependent vari-
ables that manual gaze coding cannot (e.g., pupil size or
discrete fixations within an AOI), opening up exciting
new areas of inquiry [Blaser, Eglington, Carter, & Kaldy,
2014; Oakes, 2012; Ozkan, 2018]. Thus, in some studies,
automatic eye tracking may be required to capture the
dependent variables to answer a particular research
question. In other studies, however, either automatic eye-
tracking or manual gaze coding would be capable of
capturing the dependent variables of interest.

One experimental design that can be used with either
automatic eye-tracking or manual gaze coding is a “2-large-
AOI” design, in which visual stimuli (e.g., objects, faces)
are presented simultaneously on the left and right sides of
the screen [Fernald et al., 2008; Tek, Jaffery, Fein, &
Naigles, 2008; Unruh et al., 2016]. Because of its flexibility,
the 2-large-AOI design has been used to study constructs as
diverse as memory [Oakes, Kovack-lesh, & Horst, 2010],
spoken language comprehension [Brock, Norbury, Einav, &
Nation, 2008; Goodwin, Fein, & Naigles, 2012], visual pref-
erences [Pierce, Conant, Hazin, Stoner, & Desmond, 2011;
Pierce et al., 2016], and social orienting [Unruh et al.,
2016]. In this type of study, gaze location during each
moment in time is typically categorized as directed to the
left AOI, the right AOI, or neither (e.g., between images,
away from the screen). From this information, researchers
can derive numerous dependent variables, including rela-
tive looks to each AOI, time to shift between AOIs, and the
length and location of the longest look. Though the
2-large-AOI design differentiates two relatively broad AOIs,
as opposed to discrete fixations within a given AOI, it is
possible for either system to produce inaccurate results. In
manual gaze coding, for example, a human coder could
judge a child to be looking at an image AOI, when in fact
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the child is looking slightly outside the boundaries of the
AOI (e.g., off-screen or at a non-AOI part of the screen).
The same type of error could occur in automatic eye track-
ing when internal processing algorithms estimate gaze
location inaccurately [Dalrymple et al., 2018; Niehorster,
Cornelissen, Holmqvist, Hooge, & Hessels, 2018]. Because
both systems are capable of reporting gaze location inaccu-
rately, we do not consider inaccuracy to be a disadvantage
unique to either system. We return to this issue in the
Discussion.

Despite the clear benefits of automatic eye tracking,
manual gaze coding may offer at least one substantive
methodological advantage over automatic eye tracking:
lower rates of data loss. Because manual gaze coding
involves judging gaze location from video of children’s
faces, it is relatively flexible: coders can determine gaze
location as long as children’s eyes are clearly visible on the
video. Automatic eye tracking, on the other hand, requires
multiple pieces of information to determine gaze location.
If any piece of information is missing, the eye tracker will
be unable to report gaze location, resulting in data loss—
even if the child’s gaze was directed toward one of the
AOIs. The eye tracker may also need time to “recover”
before it regains the track after the eyes have moved off-
screen and then back on-screen again [Oakes, 2010]. Thus,
automatic eye tracking may be especially affected by
behaviors such as fidgeting, excessive head movement,
watery eyes, and changes in the position of the child’s
head [Hessels, Cornelissen, Kemner, & Hooge, 2015;
Niehorster et al., 2018; Wass et al., 2014]. Considering the
impact of such behaviors on data quality is especially
important in studies of children with ASD, where behav-
iors such as squinting, body rocking, head tilting, and
peering out of the corner of the eye are likely to occur.

The goal of the current study was to determine whether
automatic eye-tracking and manual gaze coding systems
produced different rates of data loss or different overall
results. Young children with ASD participated in a screen-
based semantic processing task that contained two condi-
tions: Target Present and Target Absent. Target Present
trials presented two images (e.g., hat, bowl) and named
one of them (e.g., Look at the hat!). Target Absent trials
presented two images (e.g., hat, bowl) and named an item
that was semantically related to one of the objects
(e.g., Look at the pants!). During a given experimental ses-
sion, children’s eye movements were simultaneously
recorded both by an eye tracker and by a video camera
for later offline coding. Prior to conducting the analyses,
we processed and cleaned the data from each system, fol-
lowing standard procedures. In this way, we only exam-
ined trials that would typically be included in published
analyses, thereby maximizing the relevance of the results.

Our first research question was: Do automatic eye-
tracking and manual gaze coding produce different rates
of data loss, as indicated by the number of trials

contributed per child or by the amount of looking time
to the images per trial? Based on the inherent vulnerabil-
ity of eye tracking to data loss, we predicted that auto-
matic eye tracking would produce significantly more data
loss than manual gaze coding across both metrics. Our
second research question was: Do automatic eye-tracking
and manual gaze coding produce different patterns of
results? To address this question, we conducted a growth
curve analysis modeling looks to the target images over
time and tested the impact of the eye-gaze system (eye
tracking vs. manual gaze coding) on children’s perfor-
mance. Though the lack of empirical data in this area
prevented us from making specific predictions, we were
particularly interested in whether the analyses revealed
any significant interactions between eye-gaze system and
condition, as such a finding would indicate a difference,
by system, in the relationship between the two condi-
tions. We also conducted post hoc analyses of the data
from each system separately, to determine how the over-
all findings may have differed if we had only gathered
data from a single system.

Method
Participants

Participants were part of a broader research project
investigating early lexical processing. The project was
approved by the university institutional review board,
and parents provided written informed consent for their
child’s participation. Children completed a 2-day evalua-
tion that included a battery of developmental assess-
ments and parent questionnaires, as well as several
experimental eye-gaze tasks. The current study focused
on one eye-gaze task that was administered on both days.
This task is described in more detail below; results from
the other tasks will be reported elsewhere.

Research visits were conducted by an interdisciplinary
team that included a licensed psychologist and speech-
language pathologist with expertise in autism diagnostics.
Each child received a DSM-V diagnosis of ASD [American
Psychiatric Association, 2013], based on results of the
Autism Diagnostic Interview-Revised [Rutter, LeCouteur, &
Lord, 2003], the Autism Diagnostic Observation Schedule, Sec-
ond Edition [ADOS-2; Lord et al., 2012], and clinical exper-
tise. Based on their age and language level, children
received the Toddler Module (no words/younger n = 11;
some words/older n = 8), Module 1 (no words n = 15; some
words n = 14), or Module 2 (younger than 5 n = 3). Two
subscales of the Mullen Scales of Early Learning [Mullen,
1995] were administered: Visual Reception and Fine Motor.
Based on previous work [Bishop, Guthrie, Coffing, & Lord,
2011], age equivalents from these two subscales were aver-
aged, divided by chronological age, and multiplied by
100 to derive a nonverbal Ratio IQ score for each child

INSAR Venker et al./Eye-gaze methods 273



(mean of 100, SD of 15). The Preschool Language Scale, 5th
Edition [PLS-5; Zimmerman, Steiner, & Pond, 2011] was
administered to assess receptive language (Auditory Com-
prehension scale) and expressive language (Expressive
Communication scale). The PLS-5 yields standard scores
for both receptive and expressive language (mean of
100, SD of 15).
Participants were 51 children with ASD who contrib-

uted usable data (see “Eye-Gaze Data Processing”) from
both the automatic eye-tracking and manual gaze coding
systems (see Table 1 for participant characteristics). Forty
children were male and 11 were female. Forty-seven
children were reported by their parent or caregiver to be
White, and four children were reported to be more than
one race. Five children were reported to be Hispanic or
Latino and 46 children were reported not to be Hispanic
or Latino. ADOS-2 comparison scores [Gotham, Pickles, &
Lord, 2009] provided a measure of autism severity. The
mean score was 8, indicating that on average children
demonstrated a high level of autism-related symptoms.
Forty-eight of the 51 participants displayed clinical lan-
guage delays based on PLS-5 total scores at least −1.25 SD
below the mean. Nonverbal ratio IQ scores were below
70 for 61% of the sample (31/50; an IQ score could not
be computed for one child).

Semantic Processing Task

Children completed two blocks of a looking-while-listening
task designed to evaluate semantic representations of early
acquired words. Children sat on a parent or caregiver’s lap
in front of a 55-in. television screen (see Fig. 1). Parents were
instructed not to talk to their child or direct their attention.
Parents wore opaque sunglasses to prevent them from view-
ing the screen and inadvertently influencing their child’s
performance. The audio was presented from a central

speaker located below the screen. During an experimental
session, children’s eye movements were simultaneously
recorded both by a video camera (for later offline coding)
and by an automatic eye tracker. The video camera was
mounted below the screen and recorded video of the chil-
dren’s faces at a rate of 30 frames per second during the
experiment for later manual gaze coding. The eye tracker, a
Tobii X2-60 (Tobii Technology, Stockholm, Sweden), was
placed on the end of a 75 cm extendable arm below the
screen and recorded gaze location automatically at a rate of
60 Hz. Participants were seated so that their eyes were
approximately 60 cm from the eye tracker (the standard dis-
tance recommended for optimal tracking). Positioning the
eye tracker in this way—between the participant and the
screen—allowed us to capture looks to the entire
55-in. screen while remaining within the 36� of visual angle
(from center) recommended for optimal tracking. Specifi-
cally, the visual angle was 24� from the center to the lower
corners of the screen and 33.6� from the center to the upper
corners of the screen.

The experimental task was developed and administered
using E-Prime 2.0 (version 2.0.10.356) and the data were
analyzed in RStudio (vers. 1.1.456; R vers. 3.5.1; R Core
Team, 2019). Prior to the task, children completed a
5-point Tobii infant calibration, which presented a shak-
ing image of a chick with a trilling sound. If calibration
was poor (i.e., the green lines were not contained in the
circles for at least 4 of the 5 points), the experimenter re-
ran the calibration. If the child failed calibration after

Table 1. Participant Characteristics

Mean (SD) Range

Age in months 30.80 (3.35)
24–36

Nonverbal ratio IQ (MSEL) 65.74 (15.99)
31–102

ASD symptom severity (ADOS-2) 8.10 (1.66)
4–10

Auditory comprehension (PLS-5) 59.25 (12.12)
50–98

Expressive communication (PLS-5) 73.14 (10.45)
50–100

Total language (PLS-5) 64.02 (10.40)
50–95

Note. MSEL = Mullen Scales of Early Learning; ASD = Autism Spectrum
Disorder; ADOS-2 = Autism Diagnostic Observation Schedule, Second Edi-
tion; PLS-5 = Preschool Language Scales, Fifth Edition. Standard scores
were used for the ADOS-2 and PLS-5.

Figure 1. Visual depiction of the experimental setup. Children
sat on their parent’s lap in the chair while viewing the task. The
video camera was placed directly below the screen. The automatic
eye tracker was placed on the end of the extendable arm to ensure
appropriate placement.
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multiple attempts, the task was run without the eye
tracker for later manual coding. (In the current study, six
children were unable to complete calibration. See Eye-
Gaze Data Processing for more information.)

Target Present trials presented two images (e.g., hat,
bowl) and named one of them (e.g., Look at the hat!). Target
Absent trials presented two images (e.g., hat, bowl) with an
auditory prompt naming an item that was semantically
related to one of the objects (e.g., Look at the pants!). Trials
lasted approximately 6.5 sec. Analyses were conducted on
the window of time from 300 to 2,000 msec after the target
noun onset. Filler trials of additional nouns were included
to increase variability and maximize children’s attention
to the task, but these trials were not analyzed. Children
received two blocks of the experiment with different trial
orders. Each block included eight Target Present and eight
Target Absent trials, for a maximum of 16 trials per
condition.

Eye-Gaze Data Processing

Eye movements were coded from video by trained
research assistants (using iCoder, Version 2.03) at a rate
of 30 frames per second. The coders were unable to hear
the audio, which prevented any bias toward coding looks
to the named image. Each frame was assigned a code of
“target” or “distractor” or a code of “shifting” or “away”
for frames in which gaze was between images or off the
screen [Fernald et al., 2008]. Independent coding by two
trained coders was completed for 20% of the full sample;
frame agreement was 99% and shift agreement was 96%.

To allow a direct comparison of the automatic eye-
tracking data set and manual-coded data set, we equated
the sampling rates of each system to 30 Hz. This required
downsampling the automatic eye-tracking data, which
was originally collected at a sampling rate of 60 Hz. To
mirror the procedures used in manual coding, segments
of missing data due to blinks were interpolated for
periods of time up to 233 msec assuming the AOI (left or
right) was the same at the beginning and end of the
period of nonimage time segments.

For the purposes of the current study, data loss included
instances when a look to an image AOI was not recorded
due to limitations of the eye-gaze system (“technical” data
loss) as well as instances when a look to an AOI was not
recorded because children’s gaze was actually directed out-
side the AOIs (“true” data loss). We use the term data loss
to refer to both types of occurrences because they produce
the same outcome: periods of time in which gaze location
is not recorded as directed to an AOI, and thus contribute
no data to the analyses. Because both eye-gaze systems
treat looks away from the AOIs—true data loss—similarly,
any differences between automatic eye-tracking and man-
ual gaze coding are most likely due to technical data loss.

The full sample had initially included 70 children with
ASD. Because this study compared eye-tracking and man-
ual gaze coding, children were excluded from the analyses
if they failed to contribute usable data from both systems.
We defined “usable data” for a given system as four or
more trials per condition with at least 50% looking time to
the images during the analysis window (300–2,000 msec
after noun onset).1 Eight children were excluded because
they did not contribute gaze data from both sources on at
least 1 day, leaving 62 participants. (Six of these eight chil-
dren were excluded because they were unable to complete
calibration, a topic we return to in the Discussion.) Next,
we removed all trials in which children looked away from
the images more than 50% of the time during the analysis
window. Children were excluded if they did not have at
least four trials remaining in both conditions for each
Source. Six children had too few trials in the manual data
set. Eleven children had too few trials in the eye-tracking
data set. (Note that the 11 children who had too few trials
in the eye-tracking data set included the six children who
had too few trials in the manual-coded data set, plus five
additional children.) To ensure a level playing field, it was
critical that the analyses include only the children who
had contributed data from both sources. Thus, the 11 chil-
dren who had too few trials in either Source were
removed, leaving 51 participants who contributed data to
the primary analyses.

Analysis Plan

Our first goal was to determine whether automatic eye-
tracking and manual gaze coding produced different rates
of data loss. To address this question, we constructed two
linear mixed-effects models using the lme4 package [vers.
1.1-17; Bates, Machler, Bolker, & Walker, 2015]. The depen-
dent variable in the first model was the number of trials per
child. The dependent variable in the second model was the
proportion of frames on which children were fixating the
target or distractor object out of the total number of frames
during the analysis window (300–2,000 msec after target
word onset). Both models included Source as a fixed effect
(contrast coded as −0.5 for manual gaze coding vs. 0.5
for automatic eye tracking). Random effects included a by-
subject intercept and slope for Source.

To determine whether automatic eye-tracking and man-
ual gaze coding produced different results overall, we used
mixed-effects growth curve analysis to quantify changes in
the time course of children’s fixations to the target object
during the critical window [Mirman, 2014]. The dependent
variable was the proportion of frames on which children
fixated the target object out of the frames they fixated the

1We selected the 300–2,000 msec analysis window because it is similar to
time windows used in previous work and because it contained the average
rise and plateau of looks to target across conditions.
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target or distractor object for each time frame during the
critical window 300–2,000 msec after the onset of the tar-
get noun. To accommodate the binary nature of the data
(i.e., fixations to the target or distractor) and instances in
which a child always fixated the target or the distractor
object, we transformed this proportion to empirical log-
odds. Our fixed effects included Condition (contrast coded
as −0.5 for Target Present vs. 0.5 for Target Absent), Source
(contrast coded as −0.5 for manual gaze coding vs. 0.5 for
automatic eye tracking), four orthogonal time terms (inter-
cept, linear, quadratic, and cubic), and all the 2-way and
3-way interactions. Models were fit using Maximum
Likelihood estimation. As recommended by Barr, Levy,
Scheepers, and Tily [2013], random effects were permitted
across participants for all factors and all interactions
(i.e., a full random effects structure). The significance of
t-scores was evaluated assuming a normal distribution
(i.e., t-values > �1.96 were considered significant). This
assumption is appropriate given the large number of par-
ticipants and data points collected.

Results

Our first research question asked whether automatic eye-
tracking and manual gaze coding produced different rates
of data loss, as indicated by the number of usable trials
per child and the proportion of looking time to the
images per trial. Given our exclusionary criteria, this anal-
ysis involves a level playing field. First, participants who
were missing too much data from one system were also
excluded from the other system (e.g., the five participants
who had excessive missing data only with automatic eye
tracking). That is, we compared the number of useable tri-
als only for those participants with enough data to be
included in the final sample. Second, we excluded trials
with too much missing data (i.e., without fixations to
either object for more than 50% of the frames). That is,
we compared the proportion of looking times to images
only on those trials in which children were attentive and
tracked. We did not include Condition or its interaction
with Source in these models. Although children’s accu-
racy may differ in each Condition, the amount of useable
data should not. Moreover, including Condition and the
interactions would have overfit the models (i.e., using
three effects to fit two data points per participant). As
illustrated by the means and SDs reported below, the
amount of data loss per Conditions was highly similar for
a given Source, confirming our assumption.
We first examined the mean number of trials contrib-

uted per child for each source (see Fig. 2). In the manual-
coded data set, participants contributed 12.41 trials in
the Target Absent condition (SD = 3.48, range = 4–16)
and 12.53 trials in the Target Present condition (SD = 3.58,
range = 5–16). In the automatic eye tracking data set,

participants contributed 10.49 trials in the Target Absent
condition (SD = 3.78, range = 4–16) and 10.75 trials in
the Target Present condition (SD = 3.80, range = 4–16). As
predicted, children contributed significantly more trials
in the manual-coded data set than in the automatic eye
tracking data set, t(50) = −4.85, P < 0.001.

We next examined the proportion of looking time to
the images during the analysis window (300–2,000 msec
after target onset, see Fig. 3). In the manual-coded data set,
children looked at the images 90.05% of the time in the
Target Absent condition (SD = 4.70, range = 76.28–98.56)
and 91.22% of the time in the Target Present condition
(SD = 5.05, range = 74.62–97.70). In the automatic eye
tracking data set, children looked at the images 87.88% of
the time in the Target Absent condition (SD = 6.15,
range = 71.64–99.52) and 88.73% of the time in the Target
Present condition (SD = 5.57, range = 71.70–97.53). Con-
sistent with our predictions, the proportion of looking
time to the images was significantly higher in the manual-
coded data set than in the automatic eye tracking data set,
t(50) = −3.88, P < 0.001.

Our second research question asked whether auto-
matic eye-tracking and manual gaze coding produced
different patterns of results. Visual examination of the
data revealed overall similarities in mean looks to the
target image across the two systems (see Fig. 4). Chil-
dren’s looks to the target increased over time, and the
mean curves were higher (in an absolute sense) for the
Target Present condition than for the Target Absent
condition. Next, we statistically tested the effect of
Source (automatic eye tracking vs. manual gaze coding)
in a growth curve analysis modeling looks to the target
image over time. The full model results are presented in
Table 2. We will first discuss the model results across
Sources and will then discuss the Source by Condition
interactions.

Collapsing across Source and Condition, there was a
significant effect of all time terms (P’s < 0.017). This indi-
cates that children’s fixations to the target object were
significantly greater than chance (intercept), increased
from the beginning to the end of the window (linear
time), reached a peak asymptote and then declined (qua-
dratic), and were delayed in increasing from baseline
(cubic). As expected, there was a significant effect of Con-
dition on the intercept (P = 0.029) and quadratic time
(P = 0.017), indicating that children looked at the target
image more and had a steeper peak asymptote in accu-
racy in the Target Present condition than in the Target
Absent condition, regardless of Source. Condition did not
have a significant effect on linear time (P = 0.300) or
cubic time (P = 0.545). There was also a significant effect
of Source on the linear time term: across Conditions, the
average slope of the increase in looks to Target over time
was significantly smaller for the manual-coded data than
the eye-tracking data (P = 0.027).2 Source did not have a
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Figure 3. Mean proportion of time points during the analysis window (300–2,000 msec after noun onset) in which children were
looking at the images, separated by source (Hand coded = manual gaze coding; Tobii = automatic eye tracking) and condition (Target
Absent vs. Target Present). Dots represent the mean for each child. The bars represent �1 SE above and below the mean.

Figure 2. Mean number of usable trials per child, separated by source (Hand coded = manual gaze coding; Tobii = automatic eye tracking)
and condition (Target Absent vs. Target Present). The dots represent means for individual children. The bars represent �1 SE above and
below the mean.
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significant effect on intercept (P = 0.149), quadratic time
(P = 0.065), or cubic time (P = 0.648).
We were particularly interested in the presence of any

significant Source by Condition interactions, which would
indicate that the difference between the Target Absent and
Target Present conditions was larger for one Source than
for the other. There were no significant effects of the Con-
dition by Source interaction on linear, quadratic, or cubic
time (all Ps > 0.099). However, there was a significant
effect of the Condition by Source interaction on the inter-
cept (P = 0.015), indicating that the size of the Condition
effect (i.e., the difference in overall accuracy on Target
Absent vs. Target Present trials) was significantly different
between the two Sources. In other words, although chil-
dren looked significantly less at the target image in Target
Absent than Target Present trials overall, the decrease in
accuracy from Target Present to Target Absent trials was
significantly larger for manual gaze coding than for auto-
matic eye tracking. This pattern is evident in Figure 4,
where the gap between the red curve (Target Present) and
the blue curve (Target Absent) is larger for manual gaze
coding than for automatic eye tracking.

To complement the findings from the previous ana-
lyses, we conducted separate post hoc analyses for auto-
matic eye-tracking and manual gaze coding to determine

Figure 4. Probability of looking to the target during the analysis window (300–2,000 msec after noun onset), separated by source (Hand
coded = manual gaze coding; Tobii = automatic eye tracking) and condition (Target Absent vs. Target Present). Dots represent group means
for raw data. Solid lines represent growth curve estimates of looking probability. Shaded bands reflect �1 SE around the mean.

2This difference may have been driven by the fact that children’s accuracy
started lower (below chance), thereby allowing more room for growth of
the linear time term.

Table 2. Model Results for Both Systems

Estimate SE t value P value

(Intercept) 0.210 0.052 4.052 <0.001*
ot1 0.894 0.239 3.744 <0.001*
ot2 −0.535 0.180 −2.972 0.003*
ot3 −0.187 0.079 −2.386 0.017*
Condition −0.234 0.107 −2.190 0.029*
Source −0.037 0.026 −1.443 0.149
ot1:Condition −0.471 0.454 −1.037 0.300
ot2:Condition 0.850 0.355 2.393 0.017*
ot3:Condition 0.129 0.213 0.605 0.545
ot1:Source 0.268 0.121 2.214 0.027*
ot2:Source 0.150 0.081 1.846 0.065
ot3:Source −0.042 0.092 −0.457 0.648
Condition:Source 0.100 0.041 2.423 0.015*
ot1:Condition:Source −0.207 0.299 −0.694 0.488
ot2:Condition:Source 0.037 0.195 0.188 0.851
ot3:Condition:Source 0.249 0.151 1.653 0.099

Note. The independent variable was Time and the dependent variable was
the log odds of looking to the target image. ot1 = linear time. ot2 = qua-
dratic time. ot3 = cubic time. Condition (Target Present vs. Target Absent)
and Source (manual gaze coding vs. automatic eye tracking) were contrast
coded using −0.5 and 0.5. Thus, the overall Condition and Source results
reflect average findings across both Conditions and/or Sources.
*Significance at P < 0.05.
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what the results would have been if we had collected data
from only a single system. The data processing and
modeling approaches were identical to those used in the
previous analyses, with two exceptions. First, children
were not excluded if they failed to contribute adequate
data for both systems. Instead, children were retained in
the analyses for a given system if they contributed ade-
quate data from that system alone, which resulted in a
different sample size for each system. Second, Source was
not entered into the models because each analysis
included data from only one system.

The manual gaze coding data set included 65 of the orig-
inal 70 children. Full model results for manual gaze coding
are presented in Table 3. As in the previous analyses, there
was a significant effect of Condition on the intercept
(P = 0.012) and quadratic time (P = 0.012), indicating that
children looked at the target image more and had a steeper
peak asymptote in accuracy in the Target Present condition
than in the Target Absent condition. The effect of Condi-
tion on linear time (P = 0.313) and cubic time (P = 0.818)
remained nonsignificant. The automatic eye tracking data
set included 53 of the original 70 children. Full model
results for automatic eye tracking are presented in Table 4.
Consistent with the previous analyses, there was a signifi-
cant effect of Condition on quadratic time (P = 0.013)

and no significant effect of Condition on linear time
(P = 0.190) or cubic time (P = 0.482). In contrast to the pre-
vious analyses, however, there was not a significant effect
of Condition on the intercept (P = 0.164), indicating no
significant difference in the amount of time children spent
looking at the target image in the Target Present and the
Target Absent conditions. In sum, the overall findings for
linear, quadratic, and cubic time for both systems were
similar to the results in the previous analysis. However,
Condition effects differed between the two systems; in this
analysis, the effect of Condition was only significant for
the manual gaze coding data set.

Discussion

To our knowledge, the current study is the first to directly
compare data from automatic eye-tracking and manual
gaze coding methods gathered simultaneously from the
same children, during the same experimental sessions. As
predicted, manual gaze coding produced significantly less
data loss in young children with ASD than automatic eye
tracking, as indicated by two different metrics: the number
of usable trials and the proportion of looks to the images
per trial. Anecdotal observations have suggested that man-
ual gaze coding may be less vulnerable to data loss than
automatic eye tracking, and the current empirical evidence
supports these observations. This finding is important
because limiting data loss increases the likelihood that the
data on which we base our interpretations are valid and
reliable. Maximizing validity and reliability is particularly
important in studies of individual differences in children
with ASD, which require accurate measurements at the
level of individual participants. Thus, although eye track-
ing offers several clear advantages over manual gaze cod-
ing (e.g., automaticity, objectivity), manual gaze coding
offers at least one advantage: lower rates of data loss in
young children with ASD [Venker & Kover, 2015].

In addition to data loss, we directly compared the over-
all results from automatic eye-tracking and manual gaze
coding by entering the data from both systems into a sin-
gle model. There were numerous similarities in findings
across the two systems, suggesting that automatic eye-
tracking and manual gaze coding largely captured similar
information. Regardless of system, children looked signif-
icantly more at the target image in the Target Present
condition than in the Target Absent condition—an
unsurprising finding, since the named object was visible
only in the Target Present condition. Despite these simi-
larities, results revealed one notable discrepancy between
the two systems: the difference in overall accuracy
between the two conditions was significantly larger for
manual gaze coding than for automatic eye tracking.
Though we had expected the two systems to differ in
terms of data loss, we did not expect to find a change in

Table 3. Model Results for Manual Gaze Coding

Estimate SE t value P value

(Intercept) 0.228 0.045 5.098 <0.001*
ot1 0.652 0.211 3.089 0.002*
ot2 −0.485 0.164 −2.952 0.003*
ot3 −0.189 0.089 −2.130 0.033*
Condition −0.241 0.961 −2.511 0.012*
ot1:Condition −0.428 0.424 −1.010 0.313
ot2:Condition 0.780 0.311 2.505 0.012*
ot3:Condition −0.041 0.177 −0.231 0.818

Note. The independent variable was Time and the dependent variable was
the log odds of looking to the target image. ot1 = linear time. ot2 = qua-
dratic time. ot3 = cubic time. Condition (Target Present vs. Target Absent)
was contrast coded using −0.5 and 0.5.
*Significance at P < 0.05.

Table 4. Model Results for Automatic Eye Tracking

Estimate SE t value P value

(Intercept) 0.184 0.054 3.427 <0.001*
ot1 0.952 0.264 3.608 <0.001*
ot2 −0.485 0.178 −2.730 0.006*
ot3 −0.171 0.922 −1.858 0.063
Condition −0.153 0.110 −1.391 0.164
ot1:Condition −0.669 0.510 −1.311 0.190
ot2:Condition 0.938 0.378 2.479 0.013*
ot3:Condition 0.171 0.244 0.703 0.482

Note. The independent variable was Time and the dependent variable
was the log odds of looking to the target image. ot1 = linear time.
ot2 = quadratic time. ot3 = cubic time. Condition (Target Present vs. Target
Absent) was contrast coded using −0.5 and 0.5.
*Significance at P < 0.05.
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the pattern of results. This finding did not appear to be
attributable to differences in statistical power related to
the numbers of participants, as both data sets contained
only the 51 participants who had contributed data from
both systems. It is possible that having more trials per
child and more data per trial in the manual gaze coded
data decreased within-child variability and provided a
more robust representation of children’s performance.
Given the discrepancy between the patterns of results

emerging from the two systems, we next asked: What
would the results have been, and how might the conclu-
sions have differed, if we had only gathered data from a
single system? After all, most research labs use either one
system or the other—not both. Post hoc analyses
(on separately cleaned data sets for each system) revealed
that the results of the manual gaze coding analysis mir-
rored those in the previous analysis. Specifically, children
looked significantly more at the target image in the Tar-
get Present condition than in the Target Absent condi-
tion (P = 0.012). In contrast, the results of the automatic
eye-tracking analysis indicated no significant difference
(P = 0.164) in the amount of time children spent looking
at the target image across the two conditions. Either of
these findings—a significant difference between condi-
tions, or a nonsignificant difference—may have impor-
tant potential theoretical and clinical implications.
Because the two systems yielded different conclusions,
however, the implications of one set of results have the
potential to be strikingly different from the implications
of the other set of results. Thus, these findings suggest
that the eye-gaze system used to address a particular sci-
entific question could alter a study’s results and the scien-
tific conclusions that follow. In addition, these results
provide additional context for the previous finding that
manual gaze coding yielded a larger effect size between
conditions than automatic eye tracking—namely, that
the manual gaze coding data may have been driving the
results in the primary analysis.
The post hoc analyses also revealed meaningful informa-

tion about differences in data loss at the level of individual
children. Following separate data cleaning for each system,
the manual gaze coding data set included 65 (of the origi-
nal 70) children, and the automatic eye tracking data set
included 53 children. Thus, in addition to more trial loss
and less looking time overall, more children were excluded
(in an absolute sense) from the automatic eye-tracking
data set than the manual gaze coding data set. Excluding
participants is undesirable because it reduces statistical
power and limits the generalizability of findings. Issues of
generalizability are even more concerning when partici-
pants are excluded systematically, on the basis of child
characteristics. In the current study, for example, the
17 children who were excluded from the automatic eye-
tracking data set (but included in the manual gaze
coding data set) had significantly higher autism severity

(M = 9.18, SD = 1.07, range = 6–10) than the 53 children
who were retained in the automatic eye-tracking data set
(M = 8.17, SD = 1.67, range = 4–10; P = 0.006).3 Our study
is not the first to find a link between autism severity and
child-level exclusion in an eye-gaze study. For example,
Shic, Bradshaw, Klin, Scassellati, and Chawarska [2011]
also found that toddlers with ASD who were excluded due
to poor attention had significantly more severe autism
symptoms than toddlers who were retained in the ana-
lyses. Given that children with high autism severity may
have difficulties with language processing [Bavin et al.,
2014; Goodwin et al., 2012; Potrzeba et al., 2015], it is crit-
ically important to consider how participant exclusion
impacts study findings.

Though the current data cannot unambiguously
answer this question, it is useful to consider why the
manual gaze coding and automatic eye-tracking systems
yielded different results, both in the primary analysis of
children with data from both systems and the post hoc
analyses of each system alone. Because the separate post
hoc analyses contained different numbers of children
(65 children for manual coding and 53 for eye-tracking),
they may have been impacted by differences in statistical
power. Also, recall that the children excluded from the
separate automatic eye tracking data set had higher
autism severity than those who were retained. Thus, dif-
ferences in child characteristics may also have played a
role in the post hoc analyses, since the manual gaze cod-
ing model represented a broader range of severity than
the automatic eye-tracking model [Bavin et al., 2014; Shic
et al., 2011]. However, the primary analyses could not
have been affected by differences in participant exclusion
since they contained only the 51 children who contrib-
uted data from both systems.

One potential explanation for the discrepancy in both
the primary and post hoc analyses is a difference in
accuracy—in other words, whether a child was truly fixat-
ing a given image at a given moment in time. Although
the current findings do not speak directly to accuracy,
either system could have produced inaccurate results.
Manual gaze coding has been described as being more vul-
nerable to inaccuracy than automatic eye tracking
because it is based on human judgment [e.g., Wass et al.,
2013]. Indeed, human coders can certainly make incorrect
decisions about gaze location. However, the fact that auto-
matic eye tracking is based on light reflections and auto-
mated algorithms instead of human judgment does not
mean it is always accurate. A growing number of studies
have begun to identify concerns regarding the accuracy of
automatic eye trackers, especially in populations that may
demonstrate considerable head and body movement
[Dalrymple et al., 2018; Hessels, Andersson, et al., 2015;

3The groups did not significantly differ in age, nonverbal IQ, or receptive
or expressive language skills (all Ps > 0.383).

INSARVenker et al./Eye-gaze methods280



Hessels, Cornelissen, et al., 2015; Niehorster et al., 2018;
Schlegelmilch &Wertz, 2019].

Dalrymple et al. [2018] examined the accuracy of an
automated Tobii eye tracker and found that data from
toddlers with typical development had poorer accuracy
and precision than data from school-aged children and
adults. In fact, the mean accuracy for toddlers fell outside
the accuracy range described in the eye-tracker manual.
The accuracy of remote eye-tracking systems appears to
be particularly compromised when participants adopt
nonoptimal poses, such as tilting their heads or rotating
their heads to the left or right side [Hessels, Andersson,
et al., 2015; Niehorster et al., 2018]. This is concerning,
given that individuals with ASD often examine visual
stimuli while adopting nonstandard head orientations,
such as turning their heads and peering out of the cor-
ners of their eyes. High-quality calibration increases accu-
racy, but it can be difficult to achieve [Aslin & McMurray,
2004; Nyström et al., 2013; Schlegelmilch & Wertz, 2019;
Tenenbaum, Amso, Abar, & Sheinkopf, 2014]. Some chil-
dren may be unable to complete calibration [Dalrymple
et al., 2018], and time spent on calibration (and re-cali-
bration) decreases the likelihood that children will
remain engaged in the remainder of the task [Aslin &
McMurray, 2004]. It can also be difficult to tell whether
poor calibration occurs because of the measurement error
of the system, or because a child did not actually fixate
the intended target.

The current study had several limitations. Our findings
were based on one eye-tracking system and one manual
gaze coding system, and other systems may produce dif-
ferent results [Hessels, Andersson, et al., 2015; Niehorster
et al., 2018]. We focused on one set of data cleaning
criteria, which in our experience are representative of
those commonly used in published research. However,
changes in trial-level and child-level cleaning criteria
could have different effects. In addition, it is important
to note that the current findings are most relevant to
studies in which both manual gaze coding and automatic
eye tracking are a potentially viable option—likely those
using a 2-large-AOI design. The question of dispropor-
tionate data loss across children with ASD and children
with typical development is an additional question that
warrants future investigation.

Conclusions

As recently as 15 years ago, the use of automatic eye
tracking in infants and young children was rare [Aslin,
2007; Aslin & McMurray, 2004]. Since that time, how-
ever, automatic eye tracking has become increasingly
common in research labs studying young children,
including those with neurodevelopmental disorders.
Despite the clear methodological advantages of automatic

eye tracking, manual gaze coding may limit rates of data
loss in young children with ASD. Furthermore, the choice
of eye-gaze system has the potential to impact statistical
results and subsequent scientific conclusions. Given these
findings, our research teams have continued to use man-
ual gaze coding for studies in which the design and
dependent variables allow for either type of system. It is
our hope that the findings from the current study will
allow autism researchers to make more informed deci-
sions when selecting an eye-gaze system, whether either
system would be appropriate. The information from this
and future methodological studies will help researchers
to select the eye-gaze measurement system that best fits
their research questions and target population, as well as
help consumers of autism research to interpret the find-
ings from studies that utilize eye-gaze methods with
children with ASD. In addition, these findings highlight
the importance of continuing to develop more robust
eye-gaze methods to maximize scientific progress in
autism research.

Acknowledgments

We thank the families and children for giving their time
to participate in this research. We thank Liz Premo for
her critical role in data collection, Rob Olson for his tech-
nical assistance and expertise, and Jessica Umhoefer,
Heidi Sindberg, and Corey Ray-Subramanian for their
clinical expertise. We also thank the members of the Lit-
tle Listeners Project team for their input and assistance. A
portion of this work was presented in a talk at the Ameri-
can Speech-Language-Hearing Association conference in
November, 2016. This work was supported by NIH R01
DC012513 (Ellis Weismer, Edwards, Saffran, PIs) and a
core grant to the Waisman Center (U54 HD090256).

References

American Psychiatric Association. (2013). Diagnostic and Statisti-
cal Manual of Mental Disorders (5th ed.). Washington, DC:
American Psychiatric Association.

Aslin, R. N. (2007). What’s in a look? Developmental Science, 10,
48–53. https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted

Aslin, R. N. (2012). Infant eyes: A window on cognitive develop-
ment. Infancy, 17, 126–140. https://doi.org/10.1111/j.1532-
7078.2011.00097.x.Infant

Aslin, R. N., & McMurray, B. (2004). Automated corneal-
reflection eye tracking in infancy: Methodological develop-
ments and applications to cognition. Infancy, 6(2), 155–163.
https://doi.org/10.1207/s15327078in0602_1

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Keep it
maximal. Journal of Memory and Language, 68(3), 1–43.
https://doi.org/10.1016/j.jml.2012.11.001.Random

Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting lin-
ear mixed-effects models using lme4. Journal of Statistical
Software, 67, 1–48.

INSAR Venker et al./Eye-gaze methods 281

https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
https://doi.org/10.1111/j.1532-7078.2011.00097.x.Infant
https://doi.org/10.1111/j.1532-7078.2011.00097.x.Infant
https://doi.org/10.1207/s15327078in0602_1
https://doi.org/10.1016/j.jml.2012.11.001.Random


Bavin, E. L., Kidd, E., Prendergast, L., Baker, E.,
Dissanayake, C., & Prior, M. (2014). Severity of autism is
related to children’s language processing. Autism Research, 7,
687–694. https://doi.org/10.1002/aur.1410

Bishop, S. L., Guthrie, W., Coffing, M., & Lord, C. (2011). Con-
vergent validity of the Mullen Scales of early learning and the
differential ability scales in children with autism spectrum
disorders. American Journal on Intellectual and Developmen-
tal Disabilities, 116, 331–343. https://doi.org/10.1352/1944-
7558-116.5.331

Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014).
Pupillometry reveals a mechanism for the Autism Spectrum
Disorder (ASD) advantage in visual tasks. Scientific Reports, 4,
4301. https://doi.org/10.1038/srep04301

Brock, J., Norbury, C., Einav, S., & Nation, K. (2008). Do individ-
uals with autism process words in context? Evidence from
language-mediated eye-movements. Cognition, 108,
896–904. https://doi.org/10.1016/j.cognition.2008.06.007

Chita-Tegmark, M., Arunachalam, S., Nelson, C. A., & Tager-
Flusberg, H. (2015). Eye-tracking measurements of language
processing: Developmental differences in children at high-
risk for ASD. Journal of Autism and Developmental Disorders,
45, 3327–3338. https://doi.org/10.1007/s10803-015-2495-5

Collins, F. S., & Tabak, L. A. (2014). Policy: NIH plans to enhance
reproducibility. Nature, 505, 612–613.

Dalrymple, K. A., Manner, M. D., Harmelink, K. A.,
Teska, E. P., & Elison, J. T. (2018). An examination of record-
ing accuracy and precision from eye tracking data from tod-
dlerhood to adulthood. Frontiers in Psychology, 9, 1–12.
https://doi.org/10.3389/fpsyg.2018.00803

Falck-Ytter, T., Bölte, S., & Gredebäck, G. (2013). Eye tracking in
early autism research. Journal of Neurodevelopmental Disor-
ders, 5, 1–11. https://doi.org/10.1186/1866-1955-5-28

Fernald, A., Zangl, R., Portillo, A. L., & Marchman, V. A. (2008).
Looking while listening: Using eye movements to monitor spo-
ken language comprehension by infants and young children.
In I. A. Sekerina, E. Fernandez, & H. Clahsen (Eds.), Develop-
mental psycholinguistics: on-line methods in children’s lan-
guage processing (pp. 97–135). Amsterdam: John Benjamins.

Goodwin, A., Fein, D., & Naigles, L. R. (2012). Comprehension
of wh-questions precedes their production in typical develop-
ment and autism spectrum disorders. Autism Research, 5(2),
109–123. https://doi.org/10.1002/aur.1220

Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS
scores for a measure of severity in autism spectrum disorders.
Journal of Autism and Developmental Disorders, 39, 693–705.
https://doi.org/10.1007/s10803-008-0674-3.Standardizing

Hessels, R. S., Andersson, R., Hooge, I. T. C., Nyström, M., &
Kemner, C. (2015). Consequences of eye color, positioning, and
head movement for eye-tracking data quality in infant research.
Infancy, 20, 601–633. https://doi.org/10.1111/infa.12093

Hessels, R. S., Cornelissen, T. H. W., Kemner, C., &
Hooge, I. T. C. (2015). Qualitative tests of remote eyetracker
recovery and performance during head rotation. Behavior
Research Methods, 47, 848–859.

Kaldy, Z., Kraper, C., Carter, A. S., & Blaser, E. (2011). Toddlers
with Autism Spectrum Disorder are more successful at visual
search than typically developing toddlers. Developmental Sci-
ence, 14, 980–988. https://doi.org/10.1111/j.1467-7687.2011.
01053.x

Karatekin, C. (2007). Eye tracking studies of normative and atyp-
ical development. Developmental Review, 27(3), 283–348.
https://doi.org/10.1016/j.dr.2007.06.006

Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., &
Bishop, S. (2012). Autism diagnostic observation schedule,
Second Edition (ADOS-2) Manual (Part 1): Modules 1–4.
Torrence, CA: Western Psychological Services.

Mirman, D. (2014). Growth curve analysis and visualization
using R. Boca Raton, FL: CRC Press.

Morgante, J. D., Zolfaghari, R., & Johnson, S. P. (2012). A critical
test of temporal and spatial accuracy of the tobii T60XL eye
tracker. Infancy, 17(1), 9–32. https://doi.org/10.1111/j.1532-
7078.2011.00089.x

Mullen, E. M. (1995). Mullen scales of early learning.
Minneapolis, MN: AGS Edition.

Naigles, L. R., & Tovar, A. T. (2012). Portable intermodal prefer-
ential looking (IPL): Investigating language comprehension
in typically developing toddlers and young children with
autism. Journal of Visualized Experiments, 70, e4331. https://
doi.org/10.3791/4331

Niehorster, D. C., Cornelissen, T. H. W., Holmqvist, K.,
Hooge, I. T. C., & Hessels, R. S. (2018). What to expect from
your remote eye-tracker when participants are unrestrained.
Behavior Research Methods, 50, 213–227. https://doi.org/10.
3758/s13428-017-0863-0

Nyström, M., Andersson, R., Holmqvist, K., & van de Weijer, J.
(2013). The influence of calibration method and eye physiol-
ogy on eyetracking data quality. Behavior Research Methods,
45, 272–288. https://doi.org/10.3758/s13428-012-0247-4

Oakes, L. M. (2010). Infancy guidelines for publishing eye-
tracking data. Infancy, 15, 1–5. https://doi.org/10.1111/j.
1532-7078.2010.00030.x

Oakes, L. M. (2012). Advances in eye tracking in infancy research.
Infancy, 17, 1–8. https://doi.org/10.1111/j.1532-7078.2011.
00101.x

Oakes, L. M., Kovack-lesh, K. A., & Horst, J. S. (2010). Two are
better than one: Comparison influences infants’ visual rec-
ognition memory. Journal of Experimental Child Psychol-
ogy, 104(1), 124–131. https://doi.org/10.1016/j.jecp.2008.
09.001.Two

Ozkan, A. (2018). Using eye-tracking methods in infant memory
research. The Journal of Neurobehavioral Sciences, 5, 62–66.

Pierce, K., Conant, D., Hazin, R., Stoner, R., & Desmond, J. (2011).
Preference for geometric patterns early in life as a risk factor for
autism. Archives of General Psychiatry, 68(1), 101–109. https://
doi.org/10.1001/archgenpsychiatry.2010.113

Pierce, K., Marinero, S., Hazin, R., McKenna, B., Barnes, C. C., &
Malige, A. (2016). Eye-tracking reveals abnormal visual prefer-
ence for geometric images as an early biomarker of an ASD sub-
type associated with increased symptom severity. Biological
Psychiatry. 79, 657–666. https://doi.org/10.1016/j.biopsych.
2015.03.032

Potrzeba, E. R., Fein, D., & Naigles, L. (2015). Investigating the
shape bias in typically developing children and children with
autism spectrum disorders. Frontiers in Psychology, 6, 1–12.
https://doi.org/10.3389/fpsyg.2015.00446

Rutter, M., LeCouteur, A., & Lord, C. (2003). Autism diagnostic
interview-revised. Los Angeles: Western Psychological Service.

Schlegelmilch, K., & Wertz, A. E. (2019). The effects of calibra-
tion target, screen location, and movement type on infant

INSARVenker et al./Eye-gaze methods282

https://doi.org/10.1002/aur.1410
https://doi.org/10.1352/1944-7558-116.5.331
https://doi.org/10.1352/1944-7558-116.5.331
https://doi.org/10.1038/srep04301
https://doi.org/10.1016/j.cognition.2008.06.007
https://doi.org/10.1007/s10803-015-2495-5
https://doi.org/10.3389/fpsyg.2018.00803
https://doi.org/10.1186/1866-1955-5-28
https://doi.org/10.1002/aur.1220
https://doi.org/10.1007/s10803-008-0674-3.Standardizing
https://doi.org/10.1111/infa.12093
https://doi.org/10.1111/j.1467-7687.2011.01053.x
https://doi.org/10.1111/j.1467-7687.2011.01053.x
https://doi.org/10.1016/j.dr.2007.06.006
https://doi.org/10.1111/j.1532-7078.2011.00089.x
https://doi.org/10.1111/j.1532-7078.2011.00089.x
https://doi.org/10.3791/4331
https://doi.org/10.3791/4331
https://doi.org/10.3758/s13428-017-0863-0
https://doi.org/10.3758/s13428-017-0863-0
https://doi.org/10.3758/s13428-012-0247-4
https://doi.org/10.1111/j.1532-7078.2010.00030.x
https://doi.org/10.1111/j.1532-7078.2010.00030.x
https://doi.org/10.1111/j.1532-7078.2011.00101.x
https://doi.org/10.1111/j.1532-7078.2011.00101.x
https://doi.org/10.1016/j.jecp.2008.09.001.Two
https://doi.org/10.1016/j.jecp.2008.09.001.Two
https://doi.org/10.1001/archgenpsychiatry.2010.113
https://doi.org/10.1001/archgenpsychiatry.2010.113
https://doi.org/10.1016/j.biopsych.2015.03.032
https://doi.org/10.1016/j.biopsych.2015.03.032
https://doi.org/10.3389/fpsyg.2015.00446


eye-tracking data quality. Infancy, 24(4), 636–662. https://
doi.org/10.1111/infa.12294

Shic, F., Bradshaw, J., Klin, A., Scassellati, B., & Chawarska, K.
(2011). Limited activity monitoring in toddlers with autism
spectrum disorder. Brain Research, 1380, 246–254. https://
doi.org/10.1016/J.BRAINRES.2010.11.074

Swensen, L. D., Kelley, E., Fein, D., & Naigles, L. R. (2007). Pro-
cesses of language acquisition in children with autism: evi-
dence from preferential looking. Child Development, 78,
542–557. https://doi.org/10.1111/j.1467-8624.2007.01022.x

Tek, S., Jaffery, G., Fein, D., & Naigles, L. R. (2008). Do children with
autism spectrum disorders show a shape bias in word learning?
Autism Research, 1, 208–222. https://doi.org/10.1002/aur.38.Do

Tenenbaum, E. J., Amso, D., Abar, B., & Sheinkopf, S. J. (2014).
Attention and word learning in autistic, language delayed
and typically developing children. Frontiers in Psychology, 5,
490. https://doi.org/10.3389/fpsyg.2014.00490

Unruh, K. E., Sasson, N. J., Shafer, R. L., Whitten, A., Miller, S. J.,
Turner-Brown, L., & Bodfish, J. W. (2016). Social orienting and
attention is influenced by the presence of competing nonsocial

information in adolescents with autism. Frontiers in Neurosci-
ence, 10, 1–12. https://doi.org/10.3389/fnins.2016.00586

Venker, C. E., & Kover, S. T. (2015). An open conversation on
using eye-gaze methods in studies of neurodevelopmental dis-
orders. Journal of Speech, Language, and Hearing Research, 58,
1719–1732. https://doi.org/doi:10.1044/2015_JSLHR-L-14-0304

Wass, S. V., Forssman, L., & Leppänen, J. (2014). Robustness and
precision: How data quality may influence key dependent
variables in infant eye-tracker analyses. Infancy, 19, 427–460.
https://doi.org/10.1111/infa.12055

Wass, S. V., Smith, T. J., & Johnson, M. H. (2013). Parsing eye-
tracking data of variable quality to provide accurate fixation dura-
tion estimates in infants and adults. Behavior Research Methods,
45, 229–250. https://doi.org/10.3758/s13428-012-0245-6

Yoder, P. J., Lloyd, B. P., & Symons, F. J. (2018). Observational
measurement of behavior (2nd ed.). Baltimore, MD: Paul
H. Brookes.

Zimmerman, I. L., Steiner, V. G., & Pond, R. E. (2011). Preschool
language scales (5th ed.). San Antonio, TX: The Psychological
Corporation.

INSAR Venker et al./Eye-gaze methods 283

https://doi.org/10.1111/infa.12294
https://doi.org/10.1111/infa.12294
https://doi.org/10.1016/J.BRAINRES.2010.11.074
https://doi.org/10.1016/J.BRAINRES.2010.11.074
https://doi.org/10.1111/j.1467-8624.2007.01022.x
https://doi.org/10.1002/aur.38.Do
https://doi.org/10.3389/fpsyg.2014.00490
https://doi.org/10.3389/fnins.2016.00586
https://doi.org/doi:10.1044/2015_JSLHR-L-14-0304
https://doi.org/10.1111/infa.12055
https://doi.org/10.3758/s13428-012-0245-6

	 Comparing Automatic Eye Tracking and Manual Gaze Coding Methods in Young Children with Autism Spectrum Disorder
	Introduction
	Method
	Participants
	Semantic Processing Task
	Eye-Gaze Data Processing
	Analysis Plan

	Results
	Discussion
	Conclusions
	Acknowledgments
	References


