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Trends
The ecological relevance of statistical
learning is mostly undefined in the ani-
mal kingdom; the majority of cross-
species research in this area focuses
on revealing human-like abilities rather
than discovering the functions of sta-
tistical learning in different species.

Perception, memory, and learning
guide and constrain statistical learning
differently across species, limiting the
extent to which organisms can pro-
cess regularities from sensory inputs.

Cross-species differences can be
framed around general-purpose abil-
ities, developmental processes, and
learning challenges characterizing the
animal models under investigation,
and can be interpreted by considering
how statistical learning is integrated
within the cognitive system of the
learner.
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Both human and nonhuman organisms are sensitive to statistical regularities in
sensory inputs that support functions including communication, visual proc-
essing, and sequence learning. One of the issues faced by comparative
research in this field is the lack of a comprehensive theory to explain the
relevance of statistical learning across distinct ecological niches. In the current
review we interpret cross-species research on statistical learning based on the
perceptual and cognitive mechanisms that characterize the human and non-
human models under investigation. Considering statistical learning as an
essential part of the cognitive architecture of an animal will help to uncover
the potential ecological functions of this powerful learning process.

Finding Structures in the Sensory World
A central problem in the study of cognition and development concerns the ways in which
organisms compute sensory inputs and discover patterns in the environment. Statistical
learning (see Glossary) has been proposed as a key mechanism for extracting regularities
distributed across sensory modalities and cognitive domains, and as a process that con-
stitutes the foundation of further abilities ([1–3] for recent reviews). Over the past 20 years a
substantial body of research has explored statistical learning across myriad domains in both
human and nonhuman learners.

In the present review we identify constraints on statistical learning: differences in the amount of
statistical information acquired or types of computations performed over a structured input by a
given organism. We examine similarities and differences between species, and interpret
statistical learning findings based on what is known about domain-general mechanisms
possessed by the species in question.

Researchers in the field of human statistical learning consider these mechanisms to be an essential
component of our perceptual and cognitive systems [3]. In humans, statistical learning is con-
strained in the way inwhich itoperates acrossmodalities anddomains [1,4,5]. In addition,data from
humaninfantssuggestthatstatistical learningabilitiesmayemergeatdistinctpoints indevelopment
ofdifferent sensorymodalities.This trajectory is likelyexplained,at least inpart, bythe ways in which
the perceptual and cognitive skills of infants develop as a function of age and experience.

In nonhuman organisms, it is still unknown how statistical learning relates to other perceptual
and cognitive capacities and to ecological niches. Studies have largely focused on the types
of statistical computations performed by each species, and the extent to which such compu-
tations mirror those performed by humans. Less attention has been directed towards the ways
in which statistical learning is constrained in nonhuman animals. As in prior work with humans,
our goal is to examine statistical learning abilities through the lens of domain-general abilities
that differentiate species.
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Glossary
Artificial grammar: a nonsense
language composed of novel words
whose order mimics the structures of
natural languages.
Domains: general areas of cognition
such as language, music, object
recognition, memory, and attention.
Domain-general: refers to
processes and abilities that operate
across distinct cognitive domains.
Statistical learning is often
considered to be a domain-general
mechanism because it operates
across multiple domains including
language, music, and visual objects.
Ecological niche: a habitat or
environment in which a species lives,
and behavioral responses emitted to
best adapt to that habitat.
Finite-state grammar: transitional
probabilities between a set of
adjacent items (AB)n. A unique pair
of items generates a linear structure
based on the number repetitions
required (e.g., ABABABABAB).
Frequency of co-occurrence: how
often two elements composing a
pattern appear together. Elements
can be syllables, musical notes, or
visual shapes based on the sensory
modality implementing the pattern.
Generalization: learning of a
structure independent of the
perceptual identity of its
components. For example, ABA
represents a specific ordering of
categories of items (A and B), which
can be implemented by any given
syllables or shapes; ‘cross–circle–
cross’ and ‘triangle–hexagon–
triangle’ represent instances of the
same structure. Generalization
requires learners to transfer this
structure to novel stimuli (new
syllables or shapes).
Modality: sensory presentation of
the stimuli used in experimental
tasks. In the statistical learning
literature, the principal modalities are
auditory, visual (which can be spatial
or temporal), and tactile.
Nonadjacent dependency:
conditional probability between two
items interleaved by at least one
additional item (AXB). As for
transitional probabilities, A predicts
B.
Phrase structure grammar:
categories of items (usually words
such as determiners, nouns, verbs,
etc.) that are clustered into
Who Can Do What?
Statistical learning facilitates the detection of sequential patterns in visual, auditory, and tactile
information, as well as of spatial patterns in the visual domain [6–27]. In humans, and some
songbird species, statistical learning also supports communicative functions. This process has
been implicated in numerous aspects of early language development, including discovering
word boundaries, prosodic and phonotactic patterns, syntactic structures, and label–object
mappings [28–36]. In a similar vein, vocal learning in songbirds may involve statistical learning
processes. For example, juvenile Bengalese and zebra finches learn their own songs by
tracking the probability distribution of syllables within songs sung by adult tutors [37–39].

We have chosen to focus this review on three specific statistical learning abilities: tracking
sequential statistics, generalizing sequential patterns, and acquiring simple syntactic struc-
tures. These three abilities are particularly relevant because they have been studied using
comparable behavioral methods across species. Note that there is also a large literature on
testing human adults. For the purposes of the current comparative review, however, we focus
primarily on human infant studies because the methods are more comparable to those used
with nonhuman animals (Box 1).

Tracking Sequential Patterns
Human neonates detect frequencies of co-occurrence of streams of syllables [40] and
shapes [41]. The youngest ages for which there is published evidence showing detection of
transitional probabilities is 4.5 months [42] for visual materials and 7 months for auditory
materials [43]. Detecting transitional probabilities is more complex than detecting co-occur-
rence frequencies because transitional probabilities entail predictive relations among items,
whereas frequencies involve simple co-occurrence of elements. Given the studies published to
date, it is unclear whether the detection of sequential statistics emerges earlier than is reported
in the literature.

Sensitivity to sequential statistics has also been demonstrated in nonhuman species. Zebra
finches (Taeniopygia guttata) track transitional probabilities to encode sequences of song
syllables [44]. When learning songs from adult tutors, juvenile Bengalese finches (Lonchura
striata domestica) select chunks of notes with greater internal transitional probabilities over
groups of notes spanning chunk boundaries [37]. Following mere exposure without reward,
newborn domestic chicks (Gallus gallus) detect patterns in streams of visual elements [13].
Although it remains unclear exactly which statistics chicks are computing (e.g., transitional
probabilities or co-occurrence frequencies), this species does appear to be tuned to distribu-
tional information in its postnatal environment.

Among mammals, statistical learning from linguistic materials has been demonstrated in rats
(Rattus norvegicus), who utilize frequencies of co-occurrence rather than transitional probabili-
ties to track syllables in speech streams [8]. Cotton-top tamarins (Sanguinus oedipus) show
similar capacities; however, it is unknown whether tamarins detect co-occurrence frequencies
or transitional probabilities between syllables [45].

Generalizing Sequential Patterns
The sequential learning tasks described in the previous section require learners to track specific
sequences of elements. Other experimental paradigms assess whether learners can abstract
beyond specific sequences, thus requiring generalization. Human neonates generalize the
structure of triplets of syllables arranged in an ABB pattern (e.g., ga-ti-ti, we-fo-fo, la-gu-gu),
discriminating novel ABB sequences from random sequences of the same syllables [46]. A few
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subgroups such as noun-phrases
and verb-phrases. Subphrases can
be nested into other subphrases to
confer hierarchical organization to a
sentence. Which word pertains to
which category, and the position of
subphrases within a sentence, is
determined by statistical
dependencies (an example of
rudimentary phrase structures in the
literature: AnBn; AAABBBBBB).
Statistical learning: learning
mechanism enabling detection of
regularity (e.g., co-occurrence
frequencies, transitional probabilities,
nonadjacent dependencies, etc.) in
sensory inputs.
Transitional probability: a form of
conditional probability defined by the
formula: probability of B|
A = frequency of AB/frequency of A.
This conditional statistic is sensitive
to the order with which one item
predicts the following one within a
pair (AB).

Box 1. Behavioral Procedures

(i) Habituation

Infants are exposed to structured visual or auditory sequences until they reach a habituation criterion (diminished
looking). Each test trial consists of presentation of a single sequence that is either consistent or inconsistent with the
habituation materials. Discrimination is measured as a function of looking time to the consistent versus inconsistent test
items.

(ii) Head-Turn Preference

Infants are exposed to sound sequences for a few minutes in the presence of a neutral visual stimulus. The test items
consist of sequences that are either consistent or inconsistent with the exposure materials (e.g., words vs non-words,
the same syllables in novel orders). Infants control the duration of each test trial via a head turn in the direction of the
auditory stimulus. Discrimination is measured as in habituation. In cotton-top tamarins the orienting response towards
the speaker playing the stimuli serves as measure of discrimination.

(iii) Go/No-Go

Animals are first trained to discriminate a sound associated with the Go response (e.g., pecking on a sensor) from a
sound associated with the No-Go response (no pecking) via reinforcement and/or punishment. Test items alternate with
training stimuli which are reinforced to avoid response extinction. Subjects categorize test stimuli as consistent with Go
or No-Go stimuli experienced during training; discrimination is measured as the proportion of correct responses.

(iv) Spontaneous Discrimination

Animals are familiarized with artificial languages for hours, and are then tested on strings of sounds consistent versus
inconsistent with the familiarization language; discrimination is measured as a function of changes in calling behavior in
response to the stimuli. In the newborn chick task, animals are exposed for hours to a structured visual stream of
objects. Discrimination between consistent versus inconsistent stimuli is measured by the proportion of time spent near
the screen playing the consistent stimulus (Figure I).

(v) Operant Conditioning

Animals are trained to select one type of stimuli associated with food (S+); responses toward S� are associated with
bland punishment or no-reward. Discrimination is measured as a function of choice of consistent versus inconsistent
stimuli with respect to S+. Alternatively, the training phase consists of presentation of stimuli associated with food
reinforcement. Test items are words consistent with the language versus non-words, and the behavioral response (e.g.,
lever-pressing) associated with test stimuli is measured.
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Figure I. Apparatus and Sample Stimuli Used to Investigate the Detection of Statistical Patterns in Chicks
[13]. In the familiar sequence, the shapes are structured into pairs such that the first shape in a pair is always followed by
the same second shape. In the unfamiliar sequence, the same shapes are presented but in random order.
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months later, infants’ generalization abilities become more robust. After familiarization with a
pattern such as ABB, 7-month-old infants discriminate between novel syllables arrayed in this
familiar structure from the same syllables in a new structure (e.g., ga-ti-ti vs ga-ti-ga [47]).

Infants perform similar computations in visual and auditory nonlinguistic domains, although with
some constraints. It has been suggested that infants perform better if previously exposed to the
same regularities implemented by speech ([48]; for counterexamples, see [49]), or, more
broadly, communicative signals [50]. An alternative hypothesis suggests that successful
learning is impacted by familiarity and/or ease of processing. For example, infants are more
apt to generalize sequences of animals or upright faces than geometric forms or inverted faces
[9,21,51]. Other perceptual and cognitive factors appear to constrain this form of learning in
infants, including the presence of immediate repetitions of individual elements [9,21,52].

Nonhuman animals also generalize in sequential learning tasks, but with notable limitations.
Zebra finches generalize based on the perceptual similarity between training and test materials
rather than syllable order. In fact, in the absence of acoustic properties shared between familiar
and novel streams, finches fail to generalize at all [53–55]. Similarly to human infants, finches
seem to privilege patterns containing adjacent repetitions such as ABB and AAB [54]. Newly
hatched chicks demonstrate robust generalization given training on triplets of visual objects
arranged according to ABA, AAB, ABB, and BAA patterns, regardless of the presence of
immediate repetitions [26]. Among mammals, rats trained on ABA sequences instantiated by
strings of tones generalize to novel stimuli [56]. Similar results have been obtained with
consonant–vowel alternations implementing ABB patterns compared to random sequences
[57,58]. Rhesus macaques (Macaca mulatta) discriminate novel AAB versus ABB strings
implemented by their own calls [59]; a recent extension of this study involved another primate
species, the cotton-top tamarin, which can generalize structures presented in both speech and
musical tones [60].

Acquiring Simple Syntactic Structures
By 12 months of age, human infants can learn rudimentary syntactic structures in laboratory
tasks. Using artificial grammar learning paradigms, infants are first familiarized with simple
miniature grammars that generate sets of sentences. Infants subsequently discriminate gram-
matical versus ungrammatical strings containing either violations of internal syllable pairs or
violations at the edges of the grammar [32]. In a similar paradigm, 12-month-olds learned
phrase structures grammars that mimicked the basic statistical patterns of natural lan-
guages (e.g., a determiner, such as ‘the’ or ‘a’, requires a noun somewhere within a sentence
[34]). In this latter study, nonsense words from an artificial language were clustered in
categories (e.g., determiners) whose presence depended on the presence of other categories
(e.g., nouns). After exposure to the language, infants distinguished grammatical versus
ungrammatical test strings which violated predictive dependencies between word categories.
This task also required generalization of grammatical knowledge beyond the trained sentences.

The ability of songbirds to learn and generalize syntactic structures is somewhat more
restricted. European starlings (Sturnus vulgaris) learn structures as complex as finite-state
grammar (e.g., ABn) and hierarchical grammar (e.g., AnBn) formed by their own song syllables
[61]. Finite-state grammars generate strings of items repeated linearly (e.g., ABABAB) whereas
hierarchical grammars comprise categories of items grouped into substrings that are nested
into other substrings (e.g., phrase structure, AABBBB). However, at least in starlings, generali-
zation to novel instances of the grammars (e.g., CDCDCD) is driven by acoustic similarity
between training and test syllables, rather than by detection of the underlying patterns [62].
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When the computations require transfer of structured information to novel inputs, these species
exhibit limited capacities. Bengalese finches (Lonchura striata domestica) demonstrate more
advanced generalization skills, taking advantage of statistical (predictive) dependencies
between categories of song syllables, and generalize to strings composed of novel syllables
[10]. This evidence is consistent with the previously described results from 12-month-old
human infants, pointing to common processing of basic syntactic patterns between the two
species.

Among nonhuman primates, tamarins learn finite-state and phrase-structure grammars
[34,63]. However, in the latter case, monkeys failed to extract the structure when it required
generalization to novel sentences, unlike human infants, suggesting that the operation is limited
to the specific stimuli with which they were familiarized. In a series of artificial grammar learning
tasks involving phrase-structure grammars (similar to [34]), marmosets (Callithrix jacchus)
primarily encoded regularities involving the beginning of sentences, whereas macaques could
also track violations throughout the strings [11]. Macaques have also been compared to human
adults in tasks investigating learning of nonadjacent dependencies. In line with some findings
on nonhuman primates [63,64], but not others [65], macaques exhibited no sensitivity to
regularities involving nonadjacent syllables, only responding to violations of contiguous sylla-
bles. Humans performed better than macaques overall, detecting nonadjacent patterns [66].

Species Comparisons and Constraints
Despite many similarities, human infants and nonhuman animals diverge in the facility with
which they perform various statistical learning tasks. Our interpretation of these cross-species
differences considers perception and cognition, focusing on the extent to which these general
abilities constrain statistical learning. A similar approach has been taken to explain early learning
of grammar with respect to similarities between human and nonhuman performance. Accord-
ing to this perspective, grammar acquisition is supported by specialized perceptual and
memory systems that are possibly shared with other species [67]. In the present review article
we examine and interpret cross-species differences in comparable tasks based on domain-
general abilities possessed by the species in question. Considering the creature under investi-
gation tout court has the potential to provide a window into the ecological functions of statistical
learning. To this end, we will examine statistical learning cross-species comparisons through
the lens of three aspects of perception and cognition: vocal learning, perceptual processing,
and memory.

Relationship between Vocal Learning and Statistical Learning
Vocal learning requires animals to modify the acoustic structure of the vocalizations of their own
species and produce novel patterns of sounds. Through this mechanism, the young of some
species acquire fundamental communicative signals that facilitate social interactions with
conspecifics. Vocal learners include passerine songbirds, seals, cetaceans, and some bats.
However, there are substantial differences in the way this process unfolds across species.
Some species acquire a single novel vocalization as juveniles, whereas others learn new
sounds even in adulthood [68,69]. Differences also include the structure of the learned sound
patterns. The songs of some species provide more structural variability (e.g., European
starlings), whereas others consist of fixed sequences of notes (e.g., zebra finches) [70,71].
Differences in vocal learning across species may predict the complexity of the patterns animals
can learn and generalize in laboratory tasks [55]. In particular, species whose songs are
syntactically structured and composed of a wide range of notes should be better at performing
complex computations requiring, for instance, generalization of a given pattern to novel
exemplars.
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Consistent with this hypothesis, recent findings comparing two avian species in an artificial
grammar learning task reveal differences that are consistent with general aspects (syntactic-like
organization, phonological variability) of the vocal behavior of birds [55]. Zebra finches learn
regularities such as ABA and AAB presented as short sequences of song syllables, but fail to
generalize to structured strings formed by novel song syllables. However, the budgerigar
(common parakeet, Melopsittacus undulatus) goes beyond item-specific information and
generalizes these patterns, recognizing them even when they are implemented in novel sounds.
This difference in performance can be explained in light of what is known about vocal learning in
these species. The vocal repertoire of zebra finches includes highly stereotyped songs formed
by rigid syllable sequences, resulting in repetitive, linear patterns [70–73]. Budgerigars are
open-ended vocal learners, with high vocal plasticity, and their songs show greater phonologi-
cal variability and syntactic-like organization [74,75]. We hypothesize that the perceptual and
learning skills possessed by the finches may not be suited to performing computations more
complex than rote memorization of specific syllable order. By contrast, the vocal learning
abilities of budgerigars suggest the presence of learning mechanisms that can detect the
underlying structure of sound sequences, later recognizing that structure when implemented
by novel syllables (e.g., generalization). This hypothesis is supported by findings showing that
budgerigars possess generally superior memory for acoustic complex stimuli [76]. The direc-
tionality of this relationship remains unknown. In line with theorizing about human language, we
hypothesize that the learning abilities themselves have shaped the song structure of these
species [4,77].

Visual Statistical Learning in Neonates
The development of perceptual processing also provides insights into the learning outcomes
observed across species. Precocial and altricial species differ in the ontogeny of a range of
physiological and behavioral functions. Precocial animals are biologically mature from hatching
or birth, and are generally independent from parental care. For instance, superprecocial
animals such as megapode birds (e.g., Australian brushturkey, Alectura lathami) leave the
nest shortly after hatching, and display fully developed brain structures and motor behavior,
being able to fly few hours after hatching [78–80]. As a consequence, the early perceptual
processing performed by precocial organisms exceeds that of altricial species (see also [81]).
These ontogenetic differences may be linked to the statistical learning skills present in a given
species at birth. It is likely the case that altricial animals would have to deal with biological
limitations (e.g., neural development, sensory and perceptual processing) that constrain what
can be learned at the outset of postnatal life.

From this perspective, consider the comparison between human neonates – an altricial species
with an extended developmental timeline – and newly hatched domestic chicks, a precocial
bird species. In a visual statistical learning study, newly hatched chicks discriminated structured
from random streams of four and six shapes [13]. Human neonates, however, succeeded only
with streams of four shapes, failing with six-shape streams [41]. Limited perceptual abilities are
likely to constrain visual statistical learning in humans at birth, whose visual system is immature
(e.g., severely reduced acuity [82]), generally limiting visual learning [83]. Such restrictions are
typical of the altricial human primate, whose offspring stay immature longer than other
mammals [84,85]. Unlike humans, chicks hatch in an advanced stage of development, with
completely developed visual pathways from the very first days of postnatal life [86–88]. In
chicks, vision is the predominant sensory modality, allowing full processing of complex visual
stimuli immediately after hatching. Compared to chicks, reduced visual skills in human infants
appear to constrain statistical learning, limiting the extent to which infants can process statistics
over particular inputs. Indeed, a classic theory of perceptual development hypothesizes that
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limitations on the amount of information computed – owing to the protracted maturation of
some sensory systems relative to others – actually facilitate human perceptual and cognitive
development [89].

Statistical learning is likely to guide different functions in humans and chicks. In humans, early
learning of regularities plays a key role in domains other than vision, especially language
processing. In chicks, however, extracting regularities might be linked with early social learning,
a fundamental capacity that allows newly hatched chicks to recognize the mother hen and
siblings. This process, filial imprinting, occurs immediately after birth via learning of invariant
visual features of their social companions, such as plumage color patterns as well as beak and
head shape [86,90]. We hypothesize that statistical learning works in tandem with filial
imprinting in chicks, and leads to an integrated representation of relevant social objects that
will allow further recognition and identification. Consistent with our hypothesis, a recent study
shows that imprinting in chicks promotes the learning of multimodal regularities such as XX
versus XY implemented by sound–shape pairs as well as generalization to novel instances ([91],
see also [92]). Being precocial requires chicks to process salient visual stimuli at birth, whereas
altricial humans do not have to rely on early visual learning to identify relevant social inputs. In
this view, statistical learning abilities are influenced by the ontogeny of the species, which
determines the functions supported by the learning process (i.e., language acquisition, recog-
nition of social objects, etc.).

Memory and Statistical Learning
Memory is a fundamental component of statistical learning. Learners must keep track of
sequences of elements that rarely persist over time, and temporarily hold information necessary
for future processing (i.e., working memory [93]). According to the memory-based framework
presented in [94], regularities extracted from structured input lead to representations in long-
term memory even after short exposure (see also [95]). Memory traces then become the
foundation for subsequent learning operations, driving detection of further patterns, and
integrating stored information to find common regularities across exemplars [96,97]. Compu-
tations such as extraction, storing, and integration seem to be fundamental for both acquiring
sequential regularities and generalizing to novel exemplars. This framework also points to the
way in which learners retain and retrieve information as a constraint on statistical learning,
suggesting that sensitivity to patterns in the sensory input is shaped by the memory skills of
learners (e.g., storing, access). Following this path, we hypothesize that species with reduced
memory skills would be sensitive to a restricted set of structured information from sequentially
presented inputs compared to species with enhanced storing and retention abilities.

Among nonhuman primates, marmosets and macaques have been directly compared in
artificial grammar learning experiments to test learning of sequential syntactic patterns. When
presented with strings violating the familiar grammar at multiple locations, marmosets, unlike
macaques, detect only violations at the very beginning of the grammar [11]. One explanation for
this pattern of performance points to cross-species differences in memory skills. These species
belong to separate groups of the primate order, with distinct physical features and cognitive
abilities. Macaques are equipped with superior general learning and memory capacities,
outperforming marmosets in basic learning tasks such as the discrimination of learned stimuli
[98,99]. In particular, some species of the Callitrichidae family, including the common marmo-
set, seem to use spatial memory while foraging, concurrently tracking several object locations
containing food [100–102]. It is likely that such differences affect other computations that
closely involve learning, such as statistical processing of grammatical sequences. In this view,
58 Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1



Outstanding Questions
What is the ecological function of sta-
tistical learning in distinct species?
What does tracking frequency or prob-
ability distributions allow animals to do
in real life?

Do cross-species findings imply the
presence of a unique statistical learn-
ing mechanism that is shared between
organisms? Or does the fact that sta-
tistical learning leads to different out-
comes in different species imply the
presence of multiple separate
mechanisms?

Is statistical learning domain-general
even within a given animal species?
For example, is statistical learning
involved in domains other than vocal
learning in songbirds, as it is in
humans?

What is the directionality of the rela-
tionship between differences in statis-
tical learning and differences in general
perceptual/cognitive abilities across
species? For example, do differences
in birdsong structure result from differ-
ent learning mechanisms across spe-
cies, or are differences in learning
mechanisms due to different song
structures across species?
marmosets developed better memory skills in the spatial modality than in the temporal
modality, thus performing worse on tasks requiring retention of sequential stimuli.

The general learning systems of nonhuman primates may not be tailored to acquire linguistic
structures as complex as hierarchical grammars (see also [103]), but do support learning of
sequential patterns in other domains such as tool-use [104,105], motor actions [106,107], and
social communication [108] which require the processing of events occurring over time and
play a prominent role in the behavioral repertoires of primates. It is possible that the use of
linguistic materials in studies investigating sequential statistical learning has hindered the
discovery of more advanced abilities in nonhuman primates (see Concluding Remarks).
Experiments using ‘grammars’ created not from words but from sequences of tools or actions
might reveal statistical learning abilities that are not observed with linguistic materials. More
generally, interactions between statistical learning abilities and the elements over which learning
occurs (e.g., speech syllables vs motor actions) point to important constraints on statistical
learning, and may help to explain divergent learning outcomes across species.

Concluding Remarks
In this review we have framed cross-species differences in statistical learning in the context of
perceptual and cognitive mechanisms that vary across organisms. It is clearly the case that
reduced perceptual abilities in a given modality lead to limited learning of structured inputs, as in
the case of human neonates. In a similar vein, reduced memory capacity affects regularities
detected from sequential inputs, confining learning to a restricted portion of the information
available in the input.

According to this perspective, we might expect similar computations in species that share
cognitive functions supported by statistical learning. For instance, statistical learning is likely to
drive vocal learning in organisms that must learn to produce structured vocalizations
[71,109,110]. Similarly to human infants acquiring languages, juveniles of some songbird
species track the statistical properties of songs, and recombine statistically coherent patterns
into new songs [37,38]. These observations suggest that both acoustic features and the
structural organization of the songs are acquired during vocal learning, making this process
similar to the beginning of human language acquisition. It is thus not surprising that some bird
species and humans exhibit the most advanced statistical learning of sound sequences.

Vocal learning is not limited to birds and humans. Bats, seals, cetaceans, and elephants meet
the requirements for vocal learners: they can learn novel vocalizations and imitate the sounds of
other species. Among cetaceans, bottlenose dolphins (Tursiops truncatus) possess impressive
vocal learning and mimicry abilities: they learn to produce new vocalizations, have sophisticated
communication systems composed of extended call repertoires, and generally possess
remarkable cognitive skills [111–113]. For these reasons we would expect dolphins to show
similar statistical learning capacities to human neonates and songbirds [114]. In a similar vein,
we would expect non-vocal learners to show restricted abilities in artificial grammar learning
tasks. For example, domestic chickens are limited to short repetitive calls [115,116] whose
usage is acquired following social experience with conspecifics [110]. Given that there is no
vocal learning in this species, we predict that young chicks would fail to track probabilistic
structures from auditory stimuli, performing worse than vocal learners.

Statistical learning may support communicative functions even in the absence of vocal learning.
Fieldwork suggests that free-ranging putty-nosed monkeys (Cercopithecus nictitans) can track
co-occurrences between specific combinations of natural calls and the presence of an eagle,
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eventually emitting vocalizations to signal the predator presence to the rest of the group [117].
Black-fronted titi monkeys (Callicebus nigrifrons) produce call sequences whose combination
and type vary based on the context (e.g., aerial vs terrestrial predators [118,119]). Female
baboons (Papio cynocephalus ursinus) appear to possess a combinatorial system of com-
munication reflecting the complex hierarchy of their social group [108]. For example, female
baboons notice inconsistent call sequences with respect to the rank of the caller, recognizing
when a dominant female emits unusual vocalizations when interacting with subordinates [120].

Statistical learning abilities also impact on non-communicative domains across species.
Guinea baboons (Papio papio) demonstrated learning of hierarchical structures from visual
stimuli [121] and orthographic patterns [23]. Baboons learned statistical relations between
printed letters and their positions within a word, distinguishing English words and nonwords
with remarkable accuracy. The main theoretical implication of this work is that orthographic
processing, an essential computation in reading, might be rooted into more general statistical
learning mechanisms shared across baboons and humans, and appears to be constrained by
domain-general abilities necessary to discriminate visual objects (e.g., detecting feature
combinations).

Further consideration of the role of the perceptual and cognitive mechanisms supporting
statistical learning will help to clarify how this process unfolds in different ecological niches
(see Outstanding Questions). In human infants, the evidence suggests that statistical learning
abilities have impacted on the types of structures that are observed in human languages
[4,33,34]. It is also the case that what human infants have already learned impacts on the types
of structures that they subsequently learn most readily [96,122]. Both of these directions of
effects may influence statistical learning in non-human animals as well. Interpreting cross-
species findings in this light links our approach to perspectives on human learning that
considers statistical learning as a core component of cognitive systems, rather than as an
independent computational process [3]. This view is also aligned with modern neurocomputa-
tional theories which treat brains as sophisticated prediction machines [123], internalizing
probabilistic models of the environment to anticipate the sensory stream and generate infer-
ences [124,125]. Shifting the focus of comparative research to the systems within which
learning is embedded will us allow to develop a much deeper understanding of the ecological
relevance of statistical learning.
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