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Abstract

Natural languages contain many layers of sequential structure, from the distribution of phonemes

within words to the distribution of phrases within utterances. However, most research modeling

language acquisition using artificial languages has focused on only one type of distributional struc-

ture at a time. In two experiments, we investigated adult learning of an artificial language that con-

tains dependencies between both adjacent and non-adjacent words. We found that learners rapidly

acquired both types of regularities and that the strength of the adjacent statistics influenced learning

of both adjacent and non-adjacent dependencies. Additionally, though accuracy was similar for both

types of structure, participants’ knowledge of the deterministic non-adjacent dependencies was

more explicit than their knowledge of the probabilistic adjacent dependencies. The results are

discussed in the context of current theories of statistical learning and language acquisition.
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1. Introduction

Language acquisition is one of the most complex tasks facing human learners. Natural

languages contain many levels of structure, from the distribution of phonemes within

words to the distribution of words within phrases and phrases within utterances. Humans

master these structures in their native language early in childhood, suggesting that they

are powerfully attuned to language structure. Simplified artificial languages provide useful

models to test how sensitivity to distributional structure contributes to natural language

learning. Studies using artificial languages have revealed that human infants and adults

readily absorb structure from language-like stimuli, including speech sound categorization

(Maye, Werker, & Gerken, 2002), word segmentation (e.g., Saffran, Aslin, & Newport,
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1996; Saffran, Newport, & Aslin, 1996), lexical categories (e.g., Lany & Saffran, 2010;

Mintz, 2002), or simple grammatical structure (e.g., G�omez, 2002; Marcus, Vijayan,

Bandi Rao, & Vishton, 1999; Saffran, 2002). These studies (and many others) have

formed the foundation for theories that posit that learning the distributional properties of

language is central to language acquisition (for recent reviews, see Aslin & Newport,

2012; Romberg & Saffran, 2010).

While many studies have examined learners’ abilities to track distributional structure in

artificial languages, most have focused on the acquisition of one type of structure at a time.

For example, studies investigating word segmentation based on conditional probabilities

have used materials with dependencies between adjacent syllables (Aslin, Saffran, &

Newport, 1998) or non-adjacent segments (Newport & Aslin, 2004) or syllables (Endress

& Bonatti, 2007; Pe~na, Bonatti, Nespor, & Mehler, 2002); studies investigating phrase

structure learning based on conditional probabilities have again used dependencies between

adjacent words (Saffran, 2002; Thompson & Newport, 2007) or non-adjacent words

(G�omez, 2002; G�omez & Maye, 2005), but not both. Other studies have asked whether ini-

tial exposure to adjacent relationships can bootstrap subsequent acquisition of non-adjacent

relationships when intervening items are added (Lany & G�omez, 2008). These types of

designs are important, because they test learners’ sensitivity to particular types of distribu-

tional information. However, natural languages contain multiple levels of structure with

dependencies between both adjacent and non-adjacent elements of an utterance, such as in

relative clauses or “frequent frames.”

To successfully comprehend utterances with a relative clause, such as “The dog that
chases the cat is barking,” listeners must track a non-adjacent dependency (both semantic

and grammatical) across an intervening phrase that is itself semantically and grammati-

cally linked to the initial phrase. In this example, is barking refers to the dog and the

grammatical number of dog and is barking must agree, constituting the non-adjacent

dependency. Additionally, the relative clause that chases the cat gives more information

about the dog and also must agree in number, constituting the adjacent dependency. Inter-

estingly, recent work has revealed relationships between adults’ ability to learn non-adja-

cent dependencies in an artificial language (using a serial response task) and their speed

of processing relative clauses in English (Misyak, Christiansen, & Tomblin, 2010), as

well as relationships between learning of adjacent dependencies (in visual and auditory

grammar learning) and speech processing (Conway, Bauernschmidt, Huang, & Pisoni,

2010). These connections suggest that laboratory tasks investigating learning of statistical

structures are tapping skills relevant for natural language use.

Another aspect of natural language that involves non-adjacent structures is the “fre-

quent frame”: a phrase that differentially co-occurs with words in different lexical catego-

ries (e.g., nouns and verbs; Mintz, 2003, 2006). For example, in the frame “was X-ing,”
X is likely to be a verb (as in “The girl was playing”), whereas in the frame “the X is
going,” X is likely to be a noun. These frequent frames contain dependencies between

both adjacent and non-adjacent elements. In the phrase was X-ing, was predicts –ing,
forming the non-adjacent regularity of the frame. Additionally, because X is likely to be

a verb, there is an adjacent regularity between was and X (i.e., the conditional probability
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of run given was is higher than that of cat given was). The usefulness of frequent frames

as a cue to lexical categories depends on the distributional properties of the language,

and frequent frames are not equally useful for all natural languages (Stumper, Bannard,

Lieven, & Tomasello, 2011; see also St. Clair, Monaghan, & Christiansen, 2010 for

discussion).

Mintz (2002) demonstrated that adult learners are sensitive to the distributional patterns

of frequent frames. Participants listened to an artificial language in which a group of four

X words was heard in each of three A_B frames (the X word fell between the A and B

words). Three of these X words were also heard in a fourth A_B frame. Participants were

then asked whether particular three-word strings had occurred in the language they lis-

tened to, and familiarity scores were derived from accuracy and confidence ratings.

Familiarity scores were the same for AXB strings actually heard during familiarization

and for the AXB string omitted from familiarization, suggesting that participants had

categorized the four X words together. This interpretation implies that participants noticed

the A_B frames (or the AX or XB conditional probabilities) and used them to catego-

rize the words. However, the study was designed to test only the categorization of X

words; there was no direct test of whether participants had learned the A_B non-adjacent

regularities or the AX or XB adjacent regularities.

How learners track these multi-layered structures remains unknown. Prior studies have

been designed to detect learning of only a single type of distributional structure. To avoid

confounds, other dependencies are typically held constant, making them uninformative

about the structure of the language. For example, the language employed by G�omez

(2002) to test non-adjacent dependency learning consisted of three-word phrases in an

AXB structure. The X words were evenly distributed between the A_B frames in all con-

ditions, so that the adjacent dependencies were flat by design—all X words were equally

likely to follow each A word and to precede each B word. G�omez found that adults and

18-month-old infants were more successful at learning the non-adjacent structure when

there were many X words in the language, discriminating between familiar and novel

strings when there were 24 X words, but not when there were 12. As the number of X

words increases, the conditional probabilities between adjacent words drop, while the

non-adjacent probabilities remain high. G�omez hypothesized that the low conditional

probabilities between adjacent words served to shift participants’ attention to the highly

regular non-adjacent frames. This pattern of results raises important questions about how

learners represent the adjacent and non-adjacent regularities. Does a highly regular

sequential structure dominate learning so that participants no longer track more subtle

dependencies? Must learners attend to only one layer of structure at a time, or can they

switch between them flexibly? When the input has multiple layers of structure, do all

learners begin by attending to the same level of analysis or are there different learning

trajectories that might lead to mastery?

This study was designed to investigate these questions by employing an artificial lan-

guage in which we manipulated the strength of both adjacent and non-adjacent dependen-

cies. We used an AXB language based on G�omez (2002) with high variability in the X

position. However, rather than distributing the middle X elements evenly across all
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frames, subsets of X words were more frequent in some non-adjacent frames than others.

We tested adult participants to determine whether they learned the non-adjacent and/or

adjacent structure of the language. We also asked them to rate their confidence in their

answers. Confidence ratings provide additional information about participants’ knowledge

and allow us to ask whether participants are equally aware of the different types of pat-

terns built into the artificial language. Confidence ratings are not always related to knowl-

edge (e.g., Dienes, Altmann, Kwan, & Goode, 1995) and testing for correlations between

confidence and accuracy allows us to investigate whether participants have similar expli-

cit access to their knowledge of different levels of linguistic structure.

To investigate the trajectory of learning (i.e., whether participants tended to learn one

structure before the other), we tested participants after different lengths of familiarization

with the artificial language. In Experiment 1, we used a language in which the adjacent

regularities were strongly highlighted by their statistical properties, and in Experiment 2,

we used a language in which the adjacent regularities were less prominent. Across both

experiments, the artificial languages contained deterministic non-adjacent regularities and

probabilistic adjacent regularities. If participants initially track adjacent structure and their

attention is only shifted to non-adjacent structure after they detect high variability (i.e.,

low conditional probabilities) among adjacent relationships, we would expect that learn-

ing of the non-adjacent structure would only emerge with longer exposures to the lan-

guage. However, if the deterministic non-adjacent frames are highly salient, they may be

learned early in exposure, with sensitivity to the probabilistic adjacent structure only

developing with time. Finally, it is possible that individual learners do not track both

types of structure, but instead learn only adjacent or non-adjacent regularities, with the

relative salience or strength of the statistical cues determining what is learned.

2. Experiment 1

2.1. Method

2.1.1. Participants
A total of 156 participants (26 per condition) were recruited from the undergraduate

research pool at the University of Wisconsin—Madison; all reported normal hearing and

received extra credit for their participation. An additional 18 participants were tested but

excluded from the analyses due to missing three or more of the Screening test items

(5; see below); failure to respond to multiple test items (5); and experimenter or technical

error (8).

2.1.2 Materials
Following G�omez (2002), participants heard a list of three-word phrases of the form

AXB. The A words were pel, vot, and dak and the B words were jic, rud, and tood.
There were 16 X words: balip, benez, deecha, fengle, gensim, gople, hiftam, kicey, loga,
malsig, plizet, puser, roosa, skiger, suleb, and vamey. Phrases were recorded by a female
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native English speaker at a slow pace with lively intonation. One token of each word was

used throughout the familiarization and test. Tokens were spliced together with 250 ms

silence between words and 750 ms silence between phrases. The duration of each three-

word phrase was approximately 3 s.

Four counterbalanced languages were constructed (the complete languages and test

items can be found in the Appendix). The basic form of each language was as follows:

Each A word was paired with a B word to form a frame in which the A word perfectly

predicted the B word (the non-adjacent structure). To create the adjacent structure, the 16

X words were separated into four groups of four words. The Evenly Distributed (XED)

words were the same for each frame and occurred with equal probability in each frame.

The remaining three groups were assigned a probability relative to each A_B frame:

Higher Probability (XHP), Lower Probability (XLP), or Unattested. For each X word,

there was one frame in which it was XHP, one frame in which it was XLP and one frame

in which it was unattested. For example, loga was XHP in the dak_tood frame, XLP in the

vot_jic frame, and unattested in the pel_rud frame. Within each frame, XHP words were

four times more frequent than XLP words and XLP and XED were equally frequent (see

Fig. 1 for the bigram probabilities).

This design rendered a language of trigrams in which the relationship between the first

and third words was deterministic and the relationship between the first and second words

(and second and third words) was both probabilistic and constrained by the frame. We

created a corpus of 72 strings that reflected the probability structure depicted in Fig. 1.

The corpus consisted of 4 repetitions of each AXHPB string and 1 repetition of each

AXLPB and each AXEDB string, for a total of 24 repetitions of each A_B frame. The cor-

pus was randomized with the constraint that no AXB string was repeated immediately.

The uneven distribution of X words embedded within frames meant that some X words

were informative as to the frame they are in. Using the example introduced above, if the

current word is loga, the previous word was more likely dak than vot, and was definitely

not pel. Likewise, the next word is more likely tood than jic and is definitely not rud.
However, not all X words were informative—the four words in the XED group occurred

with equal probability in each frame, so that gople was equally likely to follow dak, vot

Fig. 1. The structure of the language used in Experiment 1 (left) and Experiment 2 (right). The numbers

represent the bigram transitional probabilities for specific A, X, and B words.
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or pel and to be followed by tood, jic or rud. Though this language is more complex than

one with only non-adjacent dependencies, the fact that some of the X words were linked

to specific frames may actually help learners detect the non-adjacent dependencies by

providing an informative context (Cleeremans, Servan-Schreiber, & McClelland, 1989).

We exploited the differences between the groups of X words to create a test that probed

the acquisition of both the non-adjacent and the adjacent structures. The Non-adjacent test

items determined whether participants could distinguish A_B frames belonging to the

familiarization language from A_B frames that never occurred during familiarization (e.g.,

pel_rud vs. pel_jic). The XED words were used in these test items because they were heard

equally often in each frame during familiarization and therefore the adjacent probabilities

were uninformative for choosing between the test strings (e.g., for the test item pel gople
rud, the bigrams pel gople and gople rud were heard with equal frequency regardless of

whether pel_rud was a legal frame in the familiarization language). Thus, the participants’

judgments could be based only on the non-adjacent structure.

The Adjacent items tested whether participants had learned which X words were likely

to appear in each frame. For these items, participants had to choose between a string with

a legal frame containing an XHP word for that frame and a string with a different legal

frame containing an X word that was unattested in that frame. Importantly, each of the X

words used in these test items occurred equally often during familiarization. Thus, correct

judgments must be based on recognizing the frame in which the X word appeared during

familiarization—either by recognizing the trigram as a whole or by attending to the adja-

cent conditional probabilities within the trigram.

Finally, we included Screening items designed to identify participants who did not pay

attention during familiarization. These items contrasted familiar AXB strings with AXB

strings containing novel X words and illegal A_B frames. Participants who missed three

or more Screening items were excluded from the analyses and Screening items were not

analyzed further.

Each of the four counterbalanced languages contained the same set of A, B, and X

words. The languages and test items were constructed so that the correct answer for each

test item would be one phrase for half the participants and the other phrase for the

remaining participants. Languages 1A and 2A had identical X distributions but different

A_B frames. Languages 1A and 1B had identical A_B frames but different distributions

of X words between those frames (the same was true for 2A and 2B). Participants who

were familiarized with Language 1A shared their Non-adjacent test items with partici-

pants from Language 2A (i.e., each Non-adjacent test item had one string with a frame

from Language 1A and one string with a frame from Language 2A) and their Adjacent

test items with participants from Language 1B (i.e., each Adjacent test item had one

string with an X word that was HP in 1A but unattested in that frame in 1B and one

string with an X word that was HP in 1B but unattested in that frame in 1A). Likewise,

participants familiarized with Language 2B shared their Non-adjacent test items with

participants from Language 1B and their Adjacent test items with participants from

Language 2A. The 156 participants were randomly assigned to one of the languages in

approximately equal numbers (1A = 41, 1B = 39, 2A = 36, and 2B = 40). There were
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at least six participants assigned to each language within each of the six conditions deter-

mined by Exposure Duration and Test Order (N = 26 per condition, see below).

2.1.3. Procedure
We manipulated exposure length across participants to investigate the dynamics of

learning. The shortest exposure (7 min) consisted of two runs through the corpus for a

total of 144 phrase tokens; the medium exposure (14 min) included four runs through the

corpus for a total of 288 tokens; and the longest exposure (21 min) included six runs

through the corpus for a total of 432 tokens. Note that the longest exposure is the same

as that used by G�omez (2002).

Stimulus presentation and data collection were performed with E-Prime 2.0 Profes-

sional (Schneider, Eschmann, & Zuccolotto, 2002). Participants were told they would be

listening to a nonsense language and that afterward they would be asked questions about

the language. They were asked to attend to the language but that they were not required

to memorize or actively figure out anything about the language. Participants sat at a com-

puter workstation and listened to the familiarization audio file over Koss UR/29 head-

phones (Koss Corporation, Milwaukee, WI, USA). After completing familiarization, the

experimenter described the test procedure. Each test question consisted of two three-

word-phrases separated by 1,000 ms. Participants were asked to indicate which phrase

was most similar to the familiarization language via key-press. After they made their

choice, they were asked to indicate how confident they were in their answer using a scale

from 1 to 7, with 7 being very confident and 1 being very unsure. Participants had 10 s

to choose the correct phrase and then unlimited time to make their confidence rating.

There were 18 test questions, 6 each testing the Non-adjacent and Adjacent structures

and 6 Screening items. Test questions were blocked by question type and the order of the

blocks was treated as a between-subjects factor. The block of screening items always

came last. We used this test structure because pilot work suggested that the order of the

test questions could affect participants’ accuracy and that blocking provided a more sensi-

tive test of learning than intermingled question types.

2.2. Results

Preliminary analyses were run for each Trial Type to determine whether accuracy was

influenced by the counterbalanced Languages (i.e., whether there was a difference in

accuracy on the Non-adjacent items between participants in Languages 1A and 1B and

participants in Languages 2A and 2B or a difference in accuracy on the Adjacent items

between participants in Languages 1A and 2A and those in Languages 1B and 2B). There

was no main effect of Language and no interactions between Language and the factors of

interest. All subsequent analyses were therefore collapsed across Language.

2.2.1. Accuracy
Accuracy was quite good in all conditions for both Non-adjacent items and Adjacent

items. The mean percentage correct for each Trial Type (Adjacent or Non-adjacent),
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Exposure Length (2, 4, or 6 lists), and Test Order (Adjacent First or Non-adjacent First)

is given in Table 1 and shown graphically in Fig. 2. Confidence intervals around each

mean reveal that participants performed above chance (50%) at a of 0.05 for 9 of the 12

conditions (see Fig. 2). Participants demonstrated some learning of both dependencies

after only 7 min of exposure (48 repetitions of each A_B frame) and more robust learn-

ing with more exposure.

To test the reliability of the differences between the means seen in Fig. 2, we fit the

raw accuracy data with a logistic mixed-effects regression model using the lme4 package

in R (Bates & Maechler, 2010; Jaeger, 2008; R Development Core Team, 2010). Trial

Type (Non-adjacent vs. Adjacent), Exposure Length (2, 4, or 6 lists), and Test Order

(Non-adjacent First vs. Adjacent First) were entered as fixed factors and Subject was

entered as a random factor. The Trial Type and Test Order factors were coded for main

effects. The model revealed a significant positive intercept, indicating that overall, partici-

pants were more likely to choose the correct than the incorrect answer (b = 0.492,

z = 8.247, p < .001). There was no main effect of Trial Type, suggesting that accuracy

was similar overall for Non-adjacent and Adjacent items. However, relative accuracy for

Non-adjacent and Adjacent items varied by test order, as indicated by a significant two-

Table 1

Mean accuracy and confidence ratings (SD) for each condition in Experiment 1

Test Order Exposure Length

Accuracy Confidence Rating

Adjacent Non-Adjacent Adjacent Non-Adjacent

Adjacent First 2 lists 0.583 (0.227) 0.545 (0.214) 4.42 (1.16) 4.35 (1.20)

4 lists 0.633 (0.225) 0.564 (0.267) 4.64 (0.88) 4.61 (1.27)

6 lists 0.692 (0.184) 0.622 (0.247) 4.54 (0.94) 4.79 (1.08)

Non-adjacent First 2 lists 0.532 (0.231) 0.636 (0.257) 4.56 (0.96) 5.03 (1.20)

4 lists 0.647 (0.178) 0.640 (0.281) 4.29 (1.00) 4.62 (1.28)

6 lists 0.641 (0.181) 0.641 (0.278) 4.61 (0.95) 5.34 (1.37)

Fig. 2. Experiment 1 mean accuracy by Trial Type and Exposure Length for Adjacent First (left) and Non-

adjacent First (right) participants. Error bars are 95% confidence intervals. The dotted line represents chance

performance (50%).
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way interaction between Trial Type and Test Order (b = 0.407, z = 2.111, p = .035).

Accuracy improved with increasing exposure length (b = 0.165, z = 2.267, p = .023). No

other main effects or interactions were significant.

To better understand the Trial Type 9 Test Order interaction, models were fit to each

test order individually, with Trial Type and Exposure Length as fixed factors and Subject

as a random factor. As expected from the pattern of means, model results for the two test

orders were somewhat different. For participants tested first on Non-adjacent items, over-

all above-chance performance was supported with a positive intercept (b = 0.541,

z = 5.809, p < .001). There were no other main effects or interactions (all p > .15).

These participants performed equally well on Non-adjacent and Adjacent test items and

performed about equally well at all exposure lengths.

Participants tested first on Adjacent items also performed above-chance overall, as

indicated by the positive intercept (b = 0.447, z = 5.877, p < .001). There was a main

effect of Trial Type (b = 0.255, z = 1.888, p = .059), with accuracy higher on Adjacent

than Non-adjacent items. Participants were also more accurate following longer exposures

(b = 0.202, z = 2.160, p = .031). The interaction was not significant, suggesting that

accuracy increased for both Adjacent and Non-adjacent items as the exposure was length-

ened.

This pattern of results demonstrates that participants were able to rapidly learn both

structures, with some participants benefiting from longer exposure durations. The different

outcomes obtained for the two test orders suggests that learning of the two structures was

not equally robust. Participants did not simply score higher on the first block of test items

than the second. Rather, participants tested first on Adjacent dependencies were subse-

quently less accurate in recognizing the Non-adjacent test items, but not the reverse. We

will return to this point in the Discussion below.

2.2.2. Individual differences in learning
These analyses provide evidence of learning for both types of structure at the group

level. While overall accuracy was approximately the same for Non-adjacent and Adjacent

test items, inspection of individual scores gives us more information about the distribution

of scores around the mean. The total number of items correct for each trial type for each

participant is plotted as a frequency histogram in Fig. 3. Comparison of the two trial types

reveals that while the means are similar, the distributions for the scores are quite different.

Performance on the Non-adjacent items followed a bimodal distribution, with many partici-

pants scoring at chance (three items correct) and a significant minority getting all six items

correct. However, performance on the Adjacent items followed a unimodal distribution

centered on four items correct. This difference in distributions suggests that the Non-adja-

cent items were relatively easy for some participants—they were able to get all of them

correct—while very few participants were able to answer as consistently on the Adjacent

items. Less consistency on Adjacent items compared to Non-adjacent items makes sense

given the structure of the stimuli. The adjacent structure consisted of 16 X words that

occurred with different frequencies across frames, so that there were many items to track

during training, and only a subset of the AXHPB items were represented in the test items.
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In contrast, the non-adjacent structure consisted of only three deterministic word pairs, so

that there was relatively less to learn and greater repetition during training, and all of the

frames were represented in the test items. The analyses above suggested that Test Order

influenced participants’ relative accuracy on each item type. Consistent with this, 19 of the

28 participants who got perfect scores on the Non-adjacent items were in the Non-adjacent

First condition.

While the overall means suggest that learners as a group were sensitive to both the non-

adjacent and adjacent regularities, they do not indicate whether individual learners tracked

both types of structure. If attentional demands require a trade-off between tracking

Fig. 3. Frequency histogram of accuracy scores for Experiment 1 for Non-adjacent items (top) and Adjacent

items (bottom).
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adjacent patterns versus non-adjacent patterns, then we would expect most participants to

show learning of one structure but not the other. If, on the other hand, the two types of

structure reinforce one another, we would expect learners to master both. Our test design

does not provide enough power to statistically test each learner’s performance on each trial

type. Instead, we scored each participant as a “learner” of a particular structure (adjacent

or non-adjacent) if he or she scored above 50% on the test items for that structure and a

“non-learner” if he or she scored 50% or below. In Table 2, we list how many participants

were classified as learning each of the structures for each exposure length.

The fact that a substantial number of participants at all exposure lengths showed learn-

ing of both structures indicates that learners are capable of tracking both types of struc-

ture, even with relatively little experience with the language. With longer exposure, more

participants learned both structures, fewer learned neither structure, and fewer learned

only the non-adjacent structure compared with the shortest exposure. The difference in

distribution of learners between the shortest and longest exposures is confirmed by a sig-

nificant Chi-square test on rows 1 and 3 of Table 2 (v2(3) = 7.831, p = .050). Interest-

ingly, at the longer exposures, far more participants learned only the adjacent structure

than only the non-adjacent structure. This asymmetry is partially due to the effect of Test

Order discussed above. Participants who were tested first on the Adjacent items tended to

score better on those items than the Non-adjacent items, a pattern we observed across

exposure durations, whereas for the longer two exposures those participants tested first on

the Non-adjacent items scored equally well on both item types.

It is also possible that differences in individual learning trajectories contributed to the

changing distribution of learners. For example, it is possible that participants who learned

the non-adjacent structure were likely to subsequently learn the adjacent structure, perhaps

because knowing the non-adjacent structure allowed them to more easily track which X

words were likely to be heard in each A_B frame (such as for frequent frames). Partici-

pants who focused exclusively on adjacent regularities, on the other hand, may success-

fully learn the adjacent structure, but may not attend to the non-adjacent frames enough to

learn their structure. These possibilities will be addressed further in the discussion.

2.2.3. Ratings
The confidence ratings provide information concerning participants’ awareness of their

knowledge of the different types of structure during the test, and whether the different

types of structure were equally salient to learners. Overall, participants rated themselves

more confident on Non-adjacent test items than Adjacent test items, though this varied

somewhat between conditions (see Table 1). To test this difference statistically, we fit the

Table 2

The number of participants who were classified as learning each structure for Experiment 1

Exposure Length Both Structures Non-Adjacent Only Adjacent Only Neither

2 lists 10 15 15 12

4 lists 16 7 15 14

6 lists 20 7 18 7
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ratings with a mixed effects model. The lme4 package does not provide p-values for the

t-statistics (for discussion, see Baayen, Davidson, & Bates 2008), so the significance of

interaction terms was determined using a log-likelihood ratio test between models includ-

ing and excluding the interaction terms. An initial analysis including Trial Type (Non-

adjacent vs. Adjacent), Test Order (Non-adjacent First vs. Adjacent First), and Exposure

Length (2, 4, or 6 lists) as fixed factors and Subject as a random factor revealed no main

effects or interactions involving Exposure Length (all t < 2). To simplify the model,

Exposure Length was therefore removed as a factor (this did not change other effects).

The subsequent analysis revealed a significant main effect of Trial Type (b = 0.27,

t = 4.71) and a Trial Type 9 Test Order interaction (b = 0.48, SE = 0.118,

v2(1) = 16.19, p < .001); no other effects or interactions were significant. Participants

tested first on the Non-adjacent items rated their confidence more highly for the Non-

adjacent items than the Adjacent items, but participants tested first on Adjacent items

rated their confidence the same for both trial types.

If confidence ratings are an accurate gauge of participants’ knowledge, those partici-

pants who get more questions correct should rate their confidence higher than those who

get fewer correct. Because participants varied in their absolute ratings, confidence ratings

were normalized by subtracting the individual trial ratings from the participant’s overall

mean confidence rating, and the subsequent difference scores were correlated with partici-

pants’ accuracy scores for each trial type. This analysis revealed significant positive cor-

relations between rating and accuracy for all exposure lengths on the Non-adjacent test

items (2 lists: r = .481, 4 lists: r = .479, 6 lists: r = .471, all p < .001) but not for the

Adjacent test items (2 lists: r = .025, 4 lists: r = .165, 6 lists: r = �.049, all p > .20).

Thus, participants who were more accurate on Non-adjacent items were also more confi-

dent in their ratings, while those that were more accurate on Adjacent items were no

more confident than those who were less accurate. This difference in the relationship

between ratings and accuracy for the two types of structure suggests that participants

were more aware of their knowledge of the non-adjacent than the adjacent structure, even

though they learned both structures similarly well.

2.3. Discussion

Participants in Experiment 1 demonstrated rapid learning of both non-adjacent and

adjacent dependencies, with similar levels of accuracy on Non-adjacent and Adjacent test

items. However, participants were more aware of the non-adjacent structure than the adja-

cent structure—they rated themselves more confident on Non-adjacent test items than

Adjacent test items, and confidence ratings were correlated with accuracy only for Non-

adjacent items.

Participants did not require long exposures to the language to learn the non-adjacent

structure, as might be the case if participants initially default to tracking adjacent

structure and only shift attention to non-adjacent structure when adjacent conditional

probabilities are uninformative. In fact, the evidence points to participants tracking the

non-adjacent structure early in exposure. After only a few minutes of experience with the
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language, participants who were tested immediately on the non-adjacent structure

performed above chance. Interestingly, increasing the exposure time did not have any

effect on confidence ratings and only affected accuracy for some conditions. In particular,

participants who were tested first on Adjacent items scored better on both Adjacent and

Non-adjacent items with increasing exposure.

It is clear that the test order (whether Adjacent or Non-adjacent items were tested first)

influenced participants’ performance—this is expected given how different the familiar-

ization and testing procedures were. The familiarization phase consisted of passively lis-

tening to the language while in the test phase participants actively selected items that

sounded more like they belonged to the language they just heard. This selection process

invites comparison of the test tokens both in our forced choice design and in test designs

that use individual-item endorsement (e.g., G�omez, 2002). Pilot testing with interleaved

trials resulted in poorer performance overall, so we adopted blocked test trials as a more

sensitive design to detect learning. While participants may learn something about the arti-

ficial language’s structure during familiarization, weaker representations may be disrupted

by the test itself. Indeed, this appears to be the case in the current experiment, with accu-

racy on the non-adjacent structure being particularly susceptible to test order effects. At

the two longer exposure lengths, participants were equally accurate on both types of

structure when tested first on the non-adjacent items but were more accurate on the

adjacent than non-adjacent items when tested first on the adjacent items. This finding is

surprising, since the non-adjacent structure was deterministic and involved less vocabu-

lary, resulting in much higher token frequency than the adjacent structure. In addition,

each item testing the adjacent statistics used legal A_B frames, so these participants had

more examples of correct non-adjacent structure before being tested than those in the

other test order. It appears that when participants focused their attention on the X words

and adjacent statistics they tended to weaken their representation of the A_B frames.

Examination of the individual participant data reveals that individual learners are capa-

ble of tracking both structures concurrently, though only some participants appeared to

do so. At each exposure length some participants learned both structures, others learned

only the adjacent or non-adjacent relationships, and some did not appear to learn anything

at all. Interestingly, while the group means were fairly stable across exposure lengths, the

proportion of participants in each of these groups changed with increasing exposure to

the language. The number of participants who learned only the non-adjacent structure

declined with more exposure (as did the number who did not learn), the number of partic-

ipants who learned only the adjacent structure was similar across exposures, and the num-

ber of participants who learned both structures increased with exposure.

This pattern of individual outcomes, coupled with the group result showing that

increased exposure primarily benefited learning of the adjacent dependencies, suggests

that individual participants followed multiple different learning trajectories. It seems that

participants who learned the non-adjacent structure most likely did so early in exposure,

and that some of those participants subsequently learned the adjacent structure, perhaps

by switching their attention from the frames to the X words within the frames. For these

participants, the deterministic frame structure may have helped highlight the adjacent
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structure in a manner similar to that proposed for categorization using frequent frames

(Chemla, Mintz, Bernal, & Christophe, 2009). In contrast, focusing on the adjacent struc-

ture did not appear to highlight the non-adjacent structure, either during familiarization or

test, perhaps because of the larger number of X words than frames. However, because

our design was cross-sectional, these proposed learning trajectories are hypothetical and

will need to be tested using a within-subjects design.

Some researchers have suggested that learning from the speech stream involves both a

slow statistical learning mechanism responsible for representing transitional probabilities

between syllables (adjacent and non-adjacent) and a rapid rule-learning mechanism that

enables generalization beyond the items actually heard (Endress & Bonatti, 2007; Pe~na,
Bonatti, Nespor, & Mehler, 2002). Crucially, these authors state that the rule-learning

mechanism only operates on segmented speech, while the statistical mechanism operates

on both segmented and continuous speech. While the rapid acquisition of the determin-

istic non-adjacent dependencies by participants in Experiment 1 may at first seem

consistent with the rule learning mechanism proposed by Endress and Bonatti, our materi-

als were not designed to assess rule learning. Endress and Bonatti and Pe~na et al.’s tasks

were designed to test whether participants acquired sublexical rules, and generalized them

to new items. The materials in this study focused on distributional regularities across

words, rather than within words; it is not immediately clear how their proposed mecha-

nisms would handle our materials. In addition, the rule-learning mechanism they propose

is specifically intended to handle generalization beyond the input, which we did not test.

Instead, we asked whether participants detected both the deterministic non-adjacent struc-

ture and the probabilistic adjacent structure, a question that required interrogating the spe-

cific words and structures presented during familiarization.

The fact that a substantial number of participants learned both adjacent and non-adja-

cent structures suggests that participants did not simply attend to either the adjacent rela-

tionships or the non-adjacent relationships but were able to track them both

simultaneously and/or switch between them flexibly. It was not the case, for these partici-

pants, that the much stronger non-adjacent relationship caused participants to stop track-

ing the weaker adjacent statistics or that the presence of informative adjacent structure

prevented the deployment of attentional resources to the non-adjacent structure. This find-

ing is consistent with the results from Mintz (2002), who demonstrated categorization of

words based on their co-occurrence in particular A_B frames. The current results suggest

that participants can identify both the correct A_B frames and which X words were most

likely to appear in those frames. Learning both of these structures would be required for

successful categorization of words based on frequent frames.

The confidence ratings illuminated further differences between participants’ knowledge

of the non-adjacent and adjacent structures, with participants rating themselves more confi-

dent on their answers to the Non-adjacent items than the Adjacent items. Interestingly, the

difference in salience of the two structures did not lead to differences in learnability. It is

not surprising that the non-adjacent structure was more salient to participants than the adja-

cent structure: The non-adjacent structure was deterministic, and each A_B frame was far

more frequent than any particular AXB string. What is more striking is that participants’
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accuracy was related to their confidence in their responses for items testing non-adjacent

structure but not items testing adjacent structure. Participants were not able to accurately

gauge their knowledge of the adjacent structure, even when that structure was tested in the

first block of test items. This suggests that the two types of structure were processed or rep-

resented differently by participants. The source of this difference is not immediately clear,

given than the structures differed in type (adjacent vs. non-adjacent) as well as by strength

of predictability (probabilistic vs. deterministic) and size of vocabulary (sixteen words vs.

three word pairs); we will return to this point in the General Discussion.

The results of Experiment 1 make clear that learners are able to track both adjacent

and non-adjacent linguistic structures within a relatively short exposure. However, it is

less clear how the two types of structure interact during the learning process. We

designed the artificial language in Experiment 1 to highlight the adjacent structure. While

each A_B frame was heard equally often and with the same number of X words, the dis-

tribution of X words was very uneven, with the AX and XB conditional probabilities for

AXHPB string four times greater than those for the AXLPB strings. It is possible that by

highlighting the adjacent structure, we held some participants back from learning

the non-adjacent structure (or from demonstrating their learning during test). In particu-

lar, the XHPB transitional probability was .80,1 and this very high local transitional

probability may have made participants less likely to keep the A word in memory.

Thus, weakening the adjacent dependencies may boost learning of the non-adjacent

dependencies.

It is also possible that the highlighting of the adjacent structure was necessary for the

rapid learning of the non-adjacent structure that we observed in Experiment 1. Simple

recurrent networks, which have been used to model human sequence learning, have

difficulty tracking non-adjacent dependencies across irrelevant intervening items (e.g.,

Cleeremans & McClelland, 1991). However, when at least some of the intervening

items are locally relevant (as in our artificial language), simple recurrent networks suc-

cessfully learn the non-adjacent structure (Cleeremans, Servan-Schreiber, & McClelland,

1989). If human learning of non-adjacent dependencies also benefits from the presence

of local dependencies, then strong adjacent dependencies may aid the process of acquir-

ing non-adjacent dependencies. With weaker transitional probabilities between adjacent

words, participants may fail to learn the non-adjacent structure or require longer expo-

sures to do so.

Finally, it is possible that the two layers of structure do not “interact” at all. Partici-

pants may attend to non-adjacent and adjacent structure separately, regardless of the

relative strength of the dependencies. For example, if participants’ rapid acquisition of

the non-adjacent dependencies in Experiment 1 was due to a fast-acting rule-learning

mechanism that extracts the deterministic information, we would not expect changes in

the strength of the adjacent dependencies to affect learning of the non-adjacent

dependencies.

In Experiment 2, we sought to test how the strength of the adjacent dependencies influ-

enced learning of the multiple structures. We designed a new artificial language with the

same non-adjacent structure as Experiment 1 but with a more subtle manipulation of the
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adjacent statistics. Within each A_B frame, the frequency of the XHP words was

decreased so that the AXHP and XHPB transitional probabilities were only twice those of

the AXLP and XLPB transitions, rather than four times. This reduced the XHPB transitional

probability to .67 from .80 and additionally ensured that XHP, XLP, and XED words

occurred with equal frequency across the corpus. If the non-adjacent and adjacent regular-

ities are learned independently, then we would expect learning outcomes to be similar to

Experiment 1: Participants should demonstrate learning of non-adjacent dependencies

after a brief exposure and additional exposure should primarily benefit learning the adja-

cent dependencies. However, if the two layers of structure do interact during learning, we

would expect a different pattern of results than we observed in Experiment 1: The weaker

adjacent dependencies could either cause participants to fail to learn the non-adjacent

dependencies (or learn them only after longer exposures) or to succeed in learning the

non-adjacent dependencies more easily, showing higher accuracy on Non-adjacent test

items than Experiment 1.

3. Experiment 2

3.1. Method

3.1.1. Participants
One hundred and fifty-six participants (26 in each condition) were included in the anal-

ysis. An additional 35 participants were tested but excluded from the analysis due to

missing three or more of the Screening test items (14); failure to respond to multiple test

items (5); and experimenter or technical error (16).

3.1.2. Materials
Four new counterbalanced languages were created using the AXB strings from Experi-

ment 1. Token frequency was changed in order to create the probability structure depicted

in Fig. 1 (right panel). The corpus for the languages consisted of one repetition of each

of the AXEDB strings, two repetitions of each of the AXHPB strings, and one repetition

of each of the AXLPB strings, for a total of 48 tokens. See the Appendix for the exact

strings and frequencies used. The 156 participants were randomly assigned to one of the

languages in approximately equal numbers (1A = 39, 1B = 39, 2A = 36, 2B = 42).

Within the six conditions determined by Exposure Length and Test Order (N = 26 in

each) there were at least six participants assigned to each language condition.

3.1.3. Procedure
The procedure was identical to Experiment 1. Exposure times were slightly different

because of the smaller size of the corpus. Thus, the shortest exposure (2 lists, 96 tokens)

was 5 min and the middle exposure (4 lists, 192 tokens) was 10 min. For the longest

exposure, we opted to give participants more experience with the language while equating

listening time with Experiment 1, in order to obtain as strong an effect as possible. For
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the longest exposure duration, participants listened for 20 min (as in Experiment 1),

which was eight times through the corpus (384 tokens). The test items and procedure

were the same as Experiment 1.

3.2. Results

The preliminary analyses revealed no differences in performance between Languages;

all subsequent analyses are collapsed across Language.

3.2.1. Accuracy
Once again, participants were able to learn both the non-adjacent and adjacent depen-

dencies. The mean percentage correct for each Trial Type (Adjacent or Non-adjacent),

Exposure Length (2, 4, or 8 lists), and Test Order (Adjacent First or Non-adjacent First)

is presented in Table 3 and displayed graphically in Fig. 4. Inspection of the 95% confi-

dence intervals reveals that means were significantly above-chance performance (50%)

for 9 of the 12 conditions (see Fig. 4). Evidence of learning is inconsistent at the shortest

exposure length but more robust at longer exposure lengths.

We fit the accuracy data with the same logistic mixed-effects model used in Experi-

ment 1, with Trial Type (Non-adjacent vs. Adjacent), Exposure Length (2, 4, or 8 lists),

and Test Order (Non-adjacent First vs. Adjacent First) as fixed factors and Subject as a

random factor. Once again there was an overall positive intercept, indicating that partici-

pants were more likely to choose the correct than the incorrect answer (b = 0.533,

z = 5.764, p < .001). Performance again improved with increased exposure duration

(b = 0.086, z = 1.948, p = .051). A significant interaction between Trial Type and Test

Order indicated that relative accuracy on Non-adjacent and Adjacent test items was influ-

enced by test order (b = 0.395, z = 2.078, p = .038). There were no other significant

main effects or interactions.

While the patterns from the full model are largely similar to what we observed in

Experiment 1, follow-up analyses on the individual test orders reveal differences between

the results of the two experiments. Participants tested first on the Non-adjacent items

performed above chance overall (positive intercept, b = 0.546, z = 4.363, p < .001) but

Table 3

Mean accuracy and confidence ratings (SD) for each condition in Experiment 2

Test Order Exposure Length

Accuracy Confidence Rating

Adjacent Non-Adjacent Adjacent Non-Adjacent

Adjacent First 2 lists 0.577 (0.190) 0.474 (0.154) 4.21 (1.06) 4.26 (1.13)

4 lists 0.581 (0.251) 0.660 (0.238) 4.42 (0.80) 5.06 (1.30)

8 lists 0.626 (0.199) 0.596 (0.246) 4.45 (0.89) 4.45 (1.32)

Non-adjacent First 2 lists 0.564 (0.194) 0.583 (0.201) 4.41 (0.76) 4.86 (0.86)

4 lists 0.574 (0.189) 0.629 (0.300) 4.26 (1.24) 4.96 (1.60)

8 lists 0.551 (0.175) 0.700 (0.289) 3.80 (1.02) 5.08 (1.41)

A. R. Romberg, J. R. Saffran / Cognitive Science (2013) 17



also showed a significant effect of Trial Type, scoring higher on Non-adjacent than Adja-

cent items (b = 0.648, z = 2.817, p = .005); the interaction between Trial Type and

Exposure Length was marginally significant (b = 0.196, z = 1.800, p = .072), providing

some evidence that the effect of Trial Type was larger at longer Exposure Lengths. In

Experiment 1, participants tested first on Non-adjacent items performed equally well on

both item types and showed no effects of exposure length. With the less prominent adja-

cent statistics available in Experiment 2, however, participants’ knowledge of the proba-

bilistic adjacent structure was weak enough to be disrupted when they focused on the

deterministic non-adjacent structure. Participants’ knowledge of the non-adjacent structure

also benefitted from more exposure to the language.

Participants tested first on Adjacent items also performed above chance overall

(positive intercept, b = 0.363, z = 4.378, p < .001) but did not exhibit effects of Trial

Type or of Exposure Length (all p > .12). This result is quite different from Experi-

ment 1, in which Adjacent First participants were consistently more accurate for Adja-

cent items than Non-adjacent items but improved on both trial types with more

exposure. This difference in performance is no doubt due to the greater challenge of

learning the weaker adjacent statistics, particularly relative to the deterministic non-

adjacent statistics. Importantly, though, participants were still able to learn the weaker

adjacent dependencies, with above-chance performance at all three exposure durations.

3.2.2. Individual differences in learning
The distributions of individual scores for the two trial types reveal patterns of learn-

ing very consistent with Experiment 1, as shown in the histogram in Fig. 5. As in

Experiment 1, the scores for the Non-adjacent items are bimodal, with many partici-

pants scoring at chance but a significant minority of participants getting all six items

correct. The scores for the Adjacent items were unimodal and slightly lower than in

Experiment 1. This pattern of results presumably reflects participants’ greater difficulty

in concurrently tracking the probabilistic adjacent dependencies and the deterministic

Fig. 4. Experiment 2 mean accuracy by Trial Type and Exposure Length for Adjacent First (left) and Non-

adjacent First (right) participants. Error bars are 95% confidence intervals. The dotted line represents chance

performance (50%).
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dependencies (especially relative to the more prominent adjacent dependencies in

Experiment 1). As in Experiment 1, about two-thirds of the participants who got a

perfect score on the Non-adjacent items (20 of 29) were in the Non-adjacent First

condition.

Binning the participants as we did in Experiment 1, Table 4 shows the number of par-

ticipants who learned each structure. A similar number of participants learned both struc-

tures as in Experiment 1, suggesting once again that some individuals were able to attend

to and learn both the non-adjacent and adjacent regularities. With increasing exposure

lengths, more participants learned both structures and fewer learned only one, changes

Fig. 5. Frequency histogram of accuracy scores for Experiment 2 for Non-adjacent items (top) and Adjacent

items (bottom).
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that are reflected in a significant Chi-square test on rows 1 and 3 of Table 4

(v2(3) = 9.981, p = .019). Surprisingly, despite overall improvements in learning with

more exposure, there is little decrease in the number of participants who learn neither

structure, which remains at about 25% of the sample for all exposure lengths. Unlike

Experiment 1, participants at the longest exposure who learned only one structure were

evenly split between those who learned the non-adjacent structure and those who learned

the adjacent structure. There is no evidence from the distribution of learners that partici-

pants first recognized the non-adjacent dependencies and then used them to help track the

adjacent dependencies, as was suggested in the discussion of Experiment 1, but it is

certainly possible that individual learners followed such a trajectory.

3.2.3. Ratings
As in Experiment 1, participants were more confident in their answers for the

Non-adjacent than the Adjacent test items. As the patterns of means in Table 3 suggests,

however, the effect of Trial Type was larger for participants who were tested first on the

Non-adjacent items. We fit the ratings with a mixed-effects model with Trial Type (Non-

adjacent vs. Adjacent), Test Order (Non-adjacent First vs. Adjacent First), and Exposure

Length (2, 4, or 8 lists) as fixed factors and Subject as a random factor. This analysis

revealed a significant three-way interaction (b = 0.167, SE = 0.049, v2(1) = 11.79

p < .001) as well as two-way interactions between Trial Type and Test Order (b = 0.475,

t = 3.78) and Trial Type and Exposure Length (b = 0.054, t = 2.22) and a main effect of

Trial Type (b = 0.486, t = 7.74). The Non-adjacent First participants consistently rated

their confidence on Non-adjacent items more highly than the Adjacent items, and this

difference increased with longer exposure. In contrast, the Adjacent First participants

generated similar confidence ratings for the Non-adjacent and Adjacent items, except for

the middle exposure length at which participants also rated the Non-adjacent items higher.

While the overall pattern of confidence ratings is similar to Experiment 1, one surpris-

ing difference is that participants’ confidence on Adjacent items actually decreased as

they gained more exposure to the language and Adjacent items were tested second. This

suggests that given the lower adjacent transitional probabilities, participants’ explicit

awareness of the adjacent structure was relatively fragile and may actually have become

less strong over time, at least relative to participants’ awareness of the deterministic non-

adjacent structure.

Further support for the hypothesis that knowledge of the non-adjacent dependencies is

more explicit than that of the adjacent dependencies comes from inspecting the correla-

tions between the normalized ratings and accuracy for each trial type. As in Experiment 1,

Table 4

The number of participants who were classified as learning each structure for Experiment 2

Exposure Length Both Structures Non-Adjacent Only Adjacent Only Neither

2 lists 5 13 19 15

4 lists 14 14 10 14

8 lists 18 11 11 12
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ratings and accuracy were correlated for Non-adjacent test items (2 lists: r = .126,

p = .370; 4 lists: r = .636, p < .001; 8 lists: r = .648, p < .001), but not for Adjacent

items (2 lists: r = .067; 4 lists: r = .125; 8 lists: r = �.029; all p > .370). This same result

holds when the data are broken down by Test Order, with both Test Orders showing a

positive correlation between Non-adjacent accuracy and ratings and neither showing a

positive correlation between Adjacent accuracy and ratings.

3.3. Discussion

In Experiment 2, we replicated the findings from Experiment 1: Adults rapidly learn

both adjacent and non-adjacent dependencies when both are present in an artificial lan-

guage. Participants showed some learning of each structure at the shortest exposure length

(96 tokens), though that knowledge was fragile and only detectable for the structure that

was tested first. More robust learning was observed at the longer exposure lengths. While

the mean accuracy was numerically greater for non-adjacent than adjacent test items at

the longer exposures, this difference did not reach statistical significance. As in Experi-

ment 1, confidence ratings revealed that participants’ awareness of the non-adjacent struc-

ture was more robust than their awareness of the adjacent structure, and was a better

predictor of accuracy for non-adjacent than adjacent structure.

Many findings were similar across experiments, including the overall accuracy for both

Adjacent and Non-adjacent items. Weakening the adjacent statistics did not boost learning

of the non-adjacent structure—participants did not attend to the non-adjacent structure to

the exclusion of the adjacent structure. However, the weaker adjacent statistics also did not

undermine learning of the non-adjacent structure, so it was not the case that strong adjacent

statistics were necessary for participants to track the non-adjacent statistics. So do the two

levels of structure interact at all? One difference between the two experiments lies in the

pattern of accuracy for each test order. Relative accuracy for Adjacent and Non-adjacent

items was influenced by test order in different ways across the two experiments, suggesting

that the strength of the adjacent statistics affected participants’ ability to maintain a repre-

sentation of the non-adjacent structure. Relatedly, the pattern of individual results was

somewhat different than what we observed in Experiment 1. Though a similar number of

individual participants learned both structures at the longest exposure lengths across both

experiments, the distribution of participants learning only one of the structures was different

from that of Experiment 1, suggesting different learning outcomes across the two studies.

4. General discussion

Natural language contains many layers of distributional structure, and determining how

humans concurrently track relationships across multiple structures will be crucial for

understanding language acquisition, as well as learning in other richly structured domains.

In two experiments we tested adult learning of multiple structures in an artificial
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language. Experiment 1 demonstrated that adults were simultaneously sensitive to both

adjacent and non-adjacent dependencies in the artificial language, though the determinis-

tic (and more frequent) non-adjacent dependencies were more salient to learners. Experi-

ment 1 also revealed significant differences in individual learning, with a large minority

of participants learning both types of structure and smaller numbers of participants learn-

ing only one type of structure. Experiment 2 was designed to determine whether the

strength of the adjacent dependencies influenced learning of both adjacent and non-adja-

cent dependencies. The results largely replicated those of Experiment 1, with participants

showing sensitivity to both types of structure and the non-adjacent structure remaining

more salient to participants. However, there were also differences in the outcomes of the

two studies, particularly in how vulnerable learning was to disruption during test.

4.1. Strength of local dependencies affects learning

The materials used in Experiments 1 and 2 differed in the strength of the relationships

between adjacent words (see Fig. 1). While the difference in absolute transitional proba-

bilities between the two languages was not large, the gap between the higher and lower

probability transitions was approximately twice as big for Experiment 1 than Experiment

2. Both languages supported learning of the non-adjacent dependencies, and at the longest

exposure durations, a similar number of participants were able to learn both structures.

However, closer inspection uncovers interesting differences between the results of the

two experiments. One caveat to keep in mind when comparing effects across the experi-

ments is that the corpus used in Experiment 1 was larger than the corpus used in Experi-

ment 2, leading to a different number of tokens at each exposure level across the two

experiments. Because of this, we discuss the differences between the experiments in qual-

itative terms but do not test them statistically.

Comparing the effects of Test Order across the two experiments reveals how the differ-

ent statistical landscapes of the two languages influenced the strength of learning. It was

not simply the case that participants had higher accuracy for the structure on which they

were tested first. Rather, in each experiment one of the structures appeared more vulnera-

ble to disruption during test than the other, as indicated by lower relative accuracy when

tested second (but approximately equivalent accuracy when tested first). In Experiment 2,

adjacent dependency learning was particularly susceptible to disruption. It is not surpris-

ing that it would be more difficult to maintain a representation of the adjacent dependen-

cies than of the non-adjacent dependencies for the language used in Experiment 2. The

non-adjacent dependencies consisted of the deterministic A_B frames, while the adjacent

dependencies (both AX and XB) were much weaker. In Experiment 1, however, it was

the deterministic non-adjacent structure that was more susceptible to disruption. The

stronger adjacent statistics used in Experiment 1 appear to have made it challenging to

maintain the non-adjacent structure while the adjacent structure was being tested. This

result is especially surprising given that a number of factors in the design should actually

have privileged the non-adjacent structure. As in Experiment 2, the non-adjacent

dependencies were more predictable and involved less vocabulary than the adjacent
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dependencies. Participants in Experiment 1 even had more exposure to the non-adjacent

regularities than those in Experiment 2, due to the larger corpus used. Finally, even the

test structure could have aided the non-adjacent dependencies: The items testing the adja-

cent structure all contained legal A_B frames, so that participants who were tested second

on the non-adjacent structure had extra examples of that structure relative to those who

were tested first. Despite these advantages, accuracy declined for participants tested sec-

ond on the non-adjacent structure in Experiment 1.

Inspection of the individual data further supports the hypothesis that differences in the

adjacent probability structure led to different learning outcomes in the two experiments.

The individual data also suggest multiple possible learning trajectories. While a similar

number of participants in both experiments were able to learn both types of structure, the

number of participants who learned each individual structure differed across Experiments 1

and 2. To quantitatively test the presence of different patterns of learning across experi-

ments, we combined the learner counts across the middle and long duration conditions of

each experiment (for which performance was similar, see Tables 2 and 4). In Experiment 1,

14 participants learned only the non-adjacent structure and 33 learned only the adjacent

structure, while in Experiment 2, 25 learned only the non-adjacent structure and 21 only the

adjacent structure. A significant Chi-square test on these totals (v2(1) = 4.795, p = .029)

confirms the different patterns of learning across the two experiments. Given the weaker

adjacent statistics in Experiment 2, more of the participants who learned just one level of

structure apparently focused on the non-adjacent structure compared to Experiment 1.

The results of Experiments 1 and 2, taken together, suggest that the group data represent

a heterogeneous mixture of learning trajectories that may map onto current theories of

sequence learning. For example, some participants, particularly in Experiment 1, may have

detected the non-adjacent structure and treated the strings similar to frequent frames—
using the frames to track and categorize the X words. This seems particularly plausible

given that our language, like the materials used by Mintz (2002), consisted of individual

words that were arranged into phrases clearly delimited by longer pauses between phrases

than between words. Other participants, particularly in Experiment 2, may have built up

the sequence from adjacent elements, similar to the manner in which learning of sequential

structure has been modeled using simple recurrent networks (Cleeremans & McClelland,

1991; Cleeremans et al., 1989). In this case, the adjacent statistics may have actually

provided locally relevant context that facilitated learning of the non-adjacent statistics

(e.g., participants learn that pel predicts rud by first noticing that pel predicts vamey and

that vamey predicts rud). A more detailed investigation of individual learning trajectories

is necessary to tease apart differences due to individual learners and differences due to

language structure.

Another question of particular interest is whether learning of the different structures is

truly simultaneous, resulting in incremental strengthening of representations throughout

familiarization, or whether participants switch their attention between the two levels of

structure, first learning some adjacent relations and then attending to the non-adjacent rela-

tions (or vice versa). Studies in which participants are either tested multiple times after mul-

tiple familiarization sessions or in which on-line learning measures are collected (such as
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the AGL-SRT task developed by Misyak et al., 2010) could be used to reveal individual

learning trajectories. One recent study did employ this paradigm to test learning of a

language containing both adjacent and non-adjacent dependencies (Vuong, Meyer, & Chris-

tiansen, 2011). Consistent with the results of the current studies, they found that learners

were sensitive to both types of dependencies from early in familiarization, though a long

exposure duration was needed to reveal significant effects. Their design, however, did not

provide a test of non-adjacency learning that controlled for adjacent statistics, limiting the

conclusions that can be drawn, nor did they investigate individual learning trajectories.

The source of the individual differences in the current experiments remains unknown.

However, recent work in other laboratories highlights the importance of understanding

these differences. Statistical learning of both visual and auditory grammars is correlated

with speech perception abilities in young adults, even when general cognitive abilities are

controlled for (Conway et al., 2010). Additionally, learning non-adjacent dependencies in

an artificial language is related to verbal working memory skills, while adjacent depen-

dency learning is related to short-term memory span (Misyak & Christiansen, 2012). Our

results suggest that adults vary not only in their ability to learn non-adjacent and adjacent

dependencies but also in the process by which they learn such dependencies. It is possible

that variation in verbal working memory and short-term memory skills influenced partici-

pants’ learning trajectories in our task, though it is not clear whether the dissociation

between dependency type and memory skill documented by Misyak and Christiansen

would be obtained given materials like those used in the current experiments, in which both

types of dependencies were embedded in the same language.

4.2. Different representation of non-adjacent and adjacent statistics

The fact that participants were able to learn both types of structure is particularly

striking given the large difference in predictability between the adjacent and the

non-adjacent structures. Participants neither focused on adjacent regularities to the

exclusion of non-local dependencies nor attended only to the highly regular non-local

dependencies to the exclusion of the much more variable adjacent relationships. While

participants in both experiments were similarly accurate on items testing the adjacent

and non-adjacent structures, they rated themselves more confident in their answers to

the non-adjacent test items, particularly when they were tested first on the non-adjacent

items. This is not altogether surprising; the deterministic structure and limited vocabu-

lary of the non-adjacent structure may have made it more salient than the more

nuanced adjacent structure.

More interesting than the difference in overall salience is the difference we observed

in the relationship between participants’ confidence and accuracy for the non-adjacent

and adjacent structures. Confidence was correlated with accuracy only for non-adjacent

test items, not adjacent test items. Participants were able to more accurately gauge their

knowledge of the deterministic non-adjacent structure than the probabilistic adjacent

structure, suggesting that the two types of regularities may have been represented differ-

ently during learning. Other researchers have found that confidence ratings are not always
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related to accuracy (e.g., Dienes et al., 1995), and extensive research has investigated the

relative implicit or explicit nature of sequence learning (for review see Cleeremans, Dest-

rebecqz, & Boyer, 1998; Dienes & Perner, 1999), though this work has tended to use

methodologies less directly related to language, such as serial reaction time or visual arti-

ficial grammar learning tasks (cf. Perruchet & Pacton, 2006). Because the two structures

employed in the current studies varied in the their vocabulary size, distance, and reliabil-

ity, we cannot say for certain whether the difference in knowledge awareness was driven

by one or all of those factors. However, it is unlikely that learning of non-adjacent struc-

tures is necessarily explicit, given that implicit learning has been demonstrated in prior

work investigating non-adjacent dependency learning. For example, Broadbent and col-

leagues investigated learning using a control task in which participants were instructed to

generate a particular outcome from a computer program (Berry & Broadbent, 1988;

Hayes & Broadbent, 1988). Results were consistent with explicit knowledge when the

computer program’s output on a particular trial depended on the participant’s input on

that trial, and implicit knowledge when output depended on the input on the previous

trial. Importantly, the relationship between input and output was probabilistic in both con-

ditions. Additionally, adults are able to learn phonotactic constraints across intervening

consonants or vowels in procedures without explicit instruction (Newport & Aslin, 2004;

Pe~na et al., 2002; Warker & Dell, 2006). Warker and Dell (2006) specifically compared a

condition in which participants were told ahead of time about embedded regularities with

one in which they were not told anything about the structure of the language. They found

no difference in learning between the two groups.

It is also possible that our method of testing participants amplified differences between

the two structure types. The alternative forced-choice procedure, which entails compari-

son of exemplars, may more easily detect explicit than implicit knowledge. If this is true,

a procedure using a more implicit test of learning may be more sensitive for determining

the relative strength of learning of the different structure types. On-line measures that do

not distinguish between learning and test phases, such as serial reaction time (e.g.,

Misyak et al., 2010) or event-related potentials (e.g., Abla, Katahira, & Okanoya, 2008;

Turk-Browne, Scholl, Chun, & Johnson, 2009), might be particularly useful in future

work. Additionally, even our longest exposure duration was only about 20 min. The rela-

tively short exposure times may have provided enough exemplars for participants to

explicitly recognize the higher frequency non-adjacent structure but not the lower fre-

quency adjacent structures. It is possible that longer exposure to the artificial language

would lead to more explicit knowledge of the adjacent dependencies (i.e., correlations

between accuracy and confidence ratings for both trial types).

The relative salience of different language-like structures and the relationship between

salience and accuracy are important considerations for studies using artificial language

learning as a model for natural language learning. For example, while knowledge of the

non-adjacent structure was relatively explicit for the adult participants in our study, 15- to

18-month-old infants are also sensitive to non-adjacent structure in tasks using similar

materials (G�omez, 2002; G�omez & Maye, 2005) and it seems unlikely that infants develop

explicit representations during artificial language learning tasks.
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Our data demonstrate that adults are capable of concurrently learning multiple levels

of distributional structure. Similar results must be demonstrated in infants if this type of

learning is relevant to first language acquisition. Infants have yet to be tested using mate-

rials containing both adjacent and non-adjacent dependencies, so it is unknown how

learning such a language would compare with languages containing only one type of

structure, or whether infants would be able to concurrently track both structures. The

developmental trajectory of non-adjacent dependency learning has not been fully charac-

terized, though it appears to improve over the second year of life: G�omez and Maye

(2005) did not find evidence that 12-month olds could track the non-adjacent dependen-

cies in their language; 15-month olds were able to do so, though perhaps less easily than

18-month olds. Prior experience with adjacent structure facilitates learning non-adjacent

structure by 12-month-old infants (Lany & G�omez, 2008), suggesting that attention to

non-adjacent statistics is influenced by context. While languages with multiple types of

structures are inherently more complex than those with only one, recent work has demon-

strated that infants are able to track adjacent transitional probabilities within a corpus of

natural language (Pelucchi, Hay, & Saffran, 2009), suggesting that complexity does not

necessarily overwhelm infants’ statistical learning abilities.

Our studies provide initial data regarding the learning of multiple language struc-

tures. However, there are open questions that should be addressed by future work. In

particular, while our data suggest that the non-adjacent and adjacent structure may

have been processed differently, the source of that difference is unknown because of

the difference in conditional probabilities in the two types of structure. Thus, we do

not draw the conclusion that these dependencies must always be processed differently.

The question of whether adjacent and non-adjacent dependency learning are subserved

by the same or separate cognitive and neural systems is currently an area of intense

investigation. At the neural level, which our data do not address, some authors propose

that Broca’s area is recruited specifically for hierarchically structured non-adjacent

dependencies (e.g., Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006; Makuu-

chi, Bahlmann, Anwander, & Friederici, 2009), supporting the idea that adjacent and

non-adjacent dependencies are necessarily processed differently. Others propose that

Broca’s area subserves processing of both local and long-distance dependencies (e.g.,

Petersson, Folia, & Hagoort, 2012).

At the cognitive level, some authors have proposed that the learning of non-adjacent

dependencies is performed by a fast-acting rule-learning mechanism, while the learning

of probabilistic adjacent dependencies is performed by a slow statistical learning system

(Endress & Bonatti, 2007). Our data do not support this particular hypothesis, as they

contradict several of the predictions for the rule learning mechanism. First, we found

rapid learning of both adjacent and non-adjacent dependencies. Second, we found that

participants’ representations of the non-adjacent structure were strengthened by increased

exposure to the language rather than being stable after an initial brief exposure. Finally, a

rule-learning mechanism such as that proposed by Endress and Bonatti should be imper-

vious to the adjacent statistics; the current results suggest that participants’ learning of

non-adjacent dependencies (identical across experiments) were affected by the strength of
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the adjacent statistics (manipulated across experiments). However, our data do not rule

out the possibility of multiple mechanisms for language learning.

5. Conclusion

Though we are modeling language learning using an artificial language, natural lan-

guages are far more complex. Our results suggest that complexity need not impede learn-

ing—indeed, multiple distributional structures may reinforce one another, even when the

structures are not equally salient. Testing participants on multiple structures also revealed

individual differences in learning, with some participants picking up on both structures

and some only one (or none). In addition, the strength of the adjacent probability struc-

ture influenced learning outcomes and possibly the individual learning trajectories, sug-

gesting that using multiple statistical structures within experiments may enrich our

understanding of how participants learn sequential structure.
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Note

1. The transitional probabilities given in the text are all forward transitional probabili-

ties (e.g., p(B|XHP) = .80. Because the non-adjacent dependencies are deterministic,

the backward transitional probabilities mirror the forward probabilities (e.g., p(A|
XHP) = .80). Participants could draw on either forward or backward transitional

probabilities (or both) to learn the adjacent structure.
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Appendix :

Languages 1A and 2A

A_B frame 1A A_B frame 2A X words

Relative Frequency

Experiment 1

Relative Frequency

Experiment 2

dak_tood dak_rud deecha, fengle, plizet, suleb 0 0

balip, gensim, puser, vamey 1 1

benez, kicey, loga, malsig 4 2

gople, hiftam, roosa, skiger 1 1

pel_rud pel_jic deecha, fengle, plizet, suleb 1 1

balip, gensim, puser, vamey 4 2

benez, kicey, loga, malsig 0 0

gople, hiftam, roosa, skiger 1 1

vot_jic vot_tood deecha, fengle, plizet, suleb 4 2

balip, gensim, puser, vamey 0 0

benez, kicey, loga, malsig 1 1

gople, hiftam, roosa, skiger 1 1

Languages 1B and 2B

A_B frame 1B A_B frame 2B X words

Relative Frequency

Experiment 1

Relative Frequency

Experiment 2

dak_tood dak_rud benez, loga, plizet, roosa 0 0

gensim, gople, skiger, vamey 1 1

deecha, fengle, kicey, malsig 4 2

balip, hiftam, puser, suleb 1 1

pel_rud pel_jic benez, loga, plizet, roosa 4 2

gensim, gople, skiger, vamey 0 0

deecha, fengle, kicey, malsig 1 1

balip, hiftam, puser, suleb 1 1

vot_jic vot_tood benez, loga, plizet, roosa 1 1

gensim, gople, skiger, vamey 4 2

deecha, fengle, kicey, malsig 0 0

balip, hiftam, puser, suleb 1 1

Test items

Each set of items was presented in random order to each participant.
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Non-adjacent items

Languages 1A and 2A

String 1 String 2

dak gople tood pel skiger jic

pel roosa rud vot hiftam tood

vot hiftam jic dak gople rud

dak hiftam rud vot roosa jic

pel roosa jic dak skiger tood

vot skiger tood pel gople rud

Languages 1B and 2B

String 1 String 2

dak balip tood pel suleb jic

pel hiftam rud vot puser tood

vot puser jic dak balip rud

dak puser rud vot hiftam jic

pel hiftam jic dak suleb tood

vot suleb tood pel balip rud

Adjacent items

Languages 1A and 1B

String 1 String 2

dak benez tood vot vamey jic

pel vamey rud dak deecha tood

vot fengle jic pel benez rud

pel loga rud vot deecha jic

dak fengle tood pel gensim rud

vot gensim jic dak loga tood

Languages 2A and 2B

String 1 String 2

dak benez rud vot vamey tood

pel vamey jic dak deecha rud

vot fengle tood pel benez jic

pel loga jic vot deecha tood

dak fengle rud pel gensim jic

vot gensim tood dak loga rud
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Screening items

Each incorrect item contains one of six X words not heard at

all in the familiarization: chila, coomo, nilbo, taspu, wadim, and
wiffle. Some incorrect items also contain an illegal A_B frame.

Language 1A

String 1 String 2

vot hiftam jic dak chila tood

dak gople tood pel nilbo rud

pel roosa rud vot taspu jic

vot wiffle tood pel vamey rud

dak wadim rud vot gensim jic

pel coomo jic dak benez tood

Language 1B

String 1 String 2

vot puser jic dak wadim tood

dak balip tood pel coomo rud

pel balip rud vot wiffle jic

dak chila rud vot vamey jic

pel nilbo jic dak fengle tood

vot taspu tood pel loga rud

Language 2A

String 1 String 2

pel skiger jic dak chila rud

vot hiftam tood pel nilbo jic

dak gople rud vot taspu tood

vot wiffle jic dak benez rud

dak wadim tood pel vamey jic

pel coomo rud vot fengle tood

Language 2B

String 1 String 2

vot suleb tood dak wadim rud

dak puser rud pel coomo jic

pel hiftam jic vot wiffle tood

dak chila tood pel loga jic

pel nilbo rud vot gensim tood

vot taspu jic dak fengle rud
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