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Abstract

How do listeners learn about the statistical regularities underlying musical harmony? In traditional

Western music, certain chords predict the occurrence of other chords: Given a particular chord, not

all chords are equally likely to follow. In Experiments 1 and 2, we investigated whether adults make

use of statistical information when learning new musical structures. Listeners were exposed to a

novel musical system containing phrases generated using an artificial grammar. This new system

contained statistical structure quite different from Western tonal music. Our results suggest that

learners take advantage of the statistical patterning of chords to acquire new musical structures,

similar to learning processes previously observed for language learning.
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1. Introduction

How does music—at its heart a strongly nonreferential system—carry meaning for listen-

ers? One influential framework for understanding music cognition posits that musical mean-

ing inheres in the creation and violation of expectations in a listener’s mind about what will

come next (Meyer, 1956). While many studies have provided empirical support for the exis-

tence of musical expectancies (e.g., Bharucha & Stoeckig, 1987; Schmuckler, 1989), rela-

tively little research has directly addressed the question of the origins of musical

expectancies during ontogeny. Some principles of musical organization appear to be univer-

sal (e.g., Schellenberg, Adachi, Purdy, & McKinnon, 2002). However, others vary cross-

culturally (e.g., Castellano, Bharucha, & Krumhansl, 1984), so musical expectations cannot

be fully explained by innate biases. By what mechanisms do humans acquire new musical

expectations?
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The general question of how learners converge on similar interpretations of complex

input has a long history in cognitive science. There is a rich literature on learning of pat-

terns without conscious awareness, beginning with Reber’s (1967, 1969) classic artificial

grammar experiments, in which subjects learned to classify letter strings with regard to a

pattern established by previous letter strings but were unable to explain their judgments.

Conceptually similar results have been obtained with motor tasks in which a spatial pattern

is covertly embedded (Hunt & Aslin, 2001; Lewicki, Hill, & Bizot, 1988). The implicit

nature of these tasks makes them a good parallel for the learning of musical ‘‘rules,’’

which are typically hard for listeners to verbalize without explicit instruction in music the-

ory, despite general familiarity with what constitutes well-formed music within a style

(Smith & Melara, 1990).

It may also be profitable to draw on insights from the field of language acquisition. For

human learners, language and music represent two of the most complex systems that are

typically acquired during the course of development. The two domains have some broad

features in common: in their primary form, both are richly patterned, hierarchical auditory

structures that serve a variety of communicative functions (Bod, 2002). They also exhibit

similar patterns of emergence in ontogeny (McMullen & Saffran, 2004), where infants

start with certain culturally independent predispositions (Aslin, Jusczyk, & Pisoni, 1998a;

Schellenberg et al., 2002; Trainor & Heinmiller, 1999; Trehub, Cohen, Thorpe, &

Morrongiello, 1986; Zentner & Kagan, 1998) which are modified upon exposure to the set

of relevant elements used by their culture (Hannon & Trehub, 2005; Kuhl, Williams,

Lacerda, Stevens, & Lindblom, 1992; Thiessen & Saffran, 2003; Trehub et al., 1986;

Werker & Lalonde, 1988). These developmental similarities between language and music

suggest the possibility of overlapping learning mechanisms.

While it is clear that some aspects of musical and linguistic processing are subserved

by different systems in the adult brain, the degree to which this specification emerges

via learning is an open question (e.g., Peretz, 2005). One potential source of overlap is

that listeners of all ages can acquire simple statistical regularities in each domain, such

as the probabilities with which linguistic or musical primitives co-occur adjacently (e.g.,

Aslin, Saffran, & Newport, 1998b; Saffran, 2003; Saffran, Aslin, & Newport, 1996;

Saffran & Griepentrog, 2001; Saffran, Johnson, Aslin, & Newport, 1999; Saffran, Reeck,

Niehbur, & Wilson, 2005; Tillmann & McAdams, 2004) and nonadjacently (Creel,

Newport, & Aslin, 2004; Newport & Aslin, 2004). This literature suggests that probabil-

ity detection may be a learning mechanism that operates over both musical and linguistic

materials.

The acquisition of syntactic structure and expectations is a complex learning problem

common to both music and language. In both domains, an infinite variety of legal expres-

sions can be produced by combining smaller elements in a systematic way. In languages,

these expressions correspond to morphemes combined to form sentences; in musical sys-

tems, they correspond to phrases (Lerdahl & Jackendoff, 1983). Because these combinato-

rial regularities vary cross-culturally, they must be learned via exposure to the native

system. It is thus possible that overlapping learning mechanisms may contribute to the acqui-

sition of the complex regularities found in music and language. This hypothesis is reinforced
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by brain imaging studies suggesting similar processing mechanisms for detecting structural

anomalies in music and language (Maess, Koelsch, Gunter, & Friederici, 2001; Patel,

Gibson, Ratner, Besson, & Holcomb, 1998).

Some aspects of linguistic grammatical structure are informed by statistics present in the

input. Adult learners can use distributional statistics—patterns of words—to discover gram-

matical categories (like noun and verb) in the input (e.g., Mintz, 2002), and to discover how

those categories combine into phrases (e.g., Morgan, Meier, & Newport, 1987, 1989;

Morgan & Newport, 1981; Saffran, 2001, 2002). More generally, sequential regularities

provide a basis for generalization beyond the input for both adults and infants (Marcus,

Vijayan, Bandi Rao, & Vishton, 1999; Peña, Bonatti, Nespor, & Mehler, 2002). Even

12-month-old infants can track the distributions of words and word categories in syntax-

learning tasks of varying complexity (Gomez & Gerken, 1999; Saffran et al., 2008; Saffran

& Wilson, 2003).

In music, grammatical well-formedness has its closest analog in musical expectan-

cies, which exist both globally (the distribution of pitches and chords, organized within

keys) and locally (transitions from one pitch or chord to the next). Many experiments

have demonstrated that listeners’ expectancy judgments in a given style relate strongly

to the distributional and sequential statistics of that style (Bharucha & Stoeckig, 1987;

Bigand, Poulin, Tillmann, Madurell, & D’Adamo, 2003; Krumhansl, 1990; Krumhansl

& Shepard, 1979; Schmuckler, 1989; Smith & Melara, 1990), a relationship that

suggests prior learning of the statistics of the system. Further, computational models

constructed to attend to such statistical information have contributed to modern music

theory (Mavromatis, 2005; Raphael & Stoddard, 2004), and many perform similarly to

expert human listeners on a variety of tasks (Bod, 2002; Krumhansl, Louhivuori,

Toiviainen, Järvinen, & Eerola, 1999; Krumhansl et al., 2000; Tillmann, Bharucha, &

Bigand, 2000).

On the other hand, fewer studies have directly probed adults’ ability to acquire the statis-

tics of an unfamiliar musical idiom. Several studies have demonstrated listeners’ attentive-

ness to the distributional hierarchy of pitches within a context phrase in an unfamiliar style,

even when doing so requires the suppression of irrelevant prior knowledge (Castellano

et al., 1984; Krumhansl et al., 1999, 2000; Oram & Cuddy, 1995). However, it remains to

be seen whether local regularities can also be learned. One candidate regularity resides in

the pattern of chord transitions used within a given style. In Western tonal music, for exam-

ple, not all transitions between chords are equally likely; the occurrence of a given chord

should constrain the listener’s expectations about what may come next, and listeners’ good-

ness ratings of chord sequences generally conform to these patterns (McMullen & Saffran,

2005; Smith & Melara, 1990). Because the particular expectations associated with Western

music do not characterize all musical systems, they are presumably learned through experi-

ence with chord sequences.

The experiments that follow were designed to examine the role of statistical informa-

tion in learning and making judgments about a new style of music. Adult participants

were exposed to musical corpora generated by one of two counterbalanced artificial

grammars, and they were tested to determine whether statistical information about chord
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transitions influenced their judgments of the well-formedness of a test corpus of musical

strings. Although it is certainly not the case that all musical regularities proceed from

harmonic transitions, these transitions represent an important form of structure. Our goal

was to test the hypothesis that learners can acquire new musical regularities by tracking

the distribution of chords in sequence. If so, then this learning mechanism, analogous to

those previously observed in language learning tasks, may play a role in the acquisition

of native musical structure.

2. Experiment 1

In this experiment, we investigated participants’ ability to learn a novel musical system.

To reduce our listeners’ reliance on Western harmonic patterns without introducing extreme

dissonance, we used the Phrygian mode as the pitch framework for our stimuli. Featured in

church music that predated the tonal era, the interval patterns in Phrygian are obtained by

playing a scale on the piano starting at E and containing only white keys. Because this mode

shares interval patterns with Western tonal music, its diatonic triads are as consonant as

those found in tonal modes. However, the relative frequency of the triads differs from

major- and minor-mode music. Using chords built on this scale, we constructed two counter-

balanced artificial musical grammars, A and B, each containing a subset of possible chord

transitions. Grammars A and B were the reverse of each other, with very little overlap in

permissible transitions between the two systems. This allowed us to control chord frequency

while manipulating serial order.

During the experiment, subjects were exposed to 100 items from one system. At test, they

listened to 60 new items and were asked to rate the similarity of each item to the materials

heard in the exposure. We used four types of test items. A-Correct and B-Correct test items

consisted of novel phrases following either Grammar A or Grammar B. A-Error and B-Error

test items primarily followed one or the other grammar, but contained 1–3 chord transitions

that were illegal in the relevant grammar. In all cases, A items were the reverse of B items.

We then compared subjects’ similarity ratings of A-Correct, A-Error, B-Correct, and

B-Error test items. If listeners were able to learn the chord transition statistics, we expected

that they should rate within-system items as most similar to the exposure corpus. Further,

within-system correct items should be rated more highly than the within-system items con-

taining illegal transitions.

2.1. Method

2.1.1. Participants
Forty undergraduates participated in Experiment 1 for course credit. The sample con-

tained 8 self-defined musicians and 32 self-defined nonmusicians. Participants reported a

mean of 4.4 years of experience performing music (SD = 4.2) and a mean of 0.75 semesters

studying music theory (SD = 1.5). Thirty-two subjects reported having taken zero semesters

of music theory.
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2.1.2. Apparatus
Stimuli were composed on a PC (Windows 2000) using SONAR 4 (Cakewalk, Inc.,

Boston, MA). The experiment was conducted using PsyScope (Cohen, Mac Whinney, Flatt,

& Provost, 1993) on a Macintosh computer (OS 9.2). Participants responded using a touch-

screen monitor.

2.1.3. Stimuli
Stimuli were 4- to 10-chord progressions, constructed to conform to one of two artificial

musical grammars, System A and System B (see Fig. 1). These grammars, which are rever-

sals of each other, were built on the Phrygian scale. Both grammars constrained the items to

begin and end on the tonic chord (designated by the Roman numeral I1) whose main or root

note is also the primary note of the scale; however, multiple loops through the grammar

were permitted. Every progression in the System B corpus was a reversal of a progression in

the System A corpus.

To create our exposure corpora, we first used a computer program to generate an exhaus-

tive list of chord progressions that followed each grammar and contained 10 or fewer

chords. From that list, we selected 50 progressions according to the following criteria. First,

in order to help listeners establish a tonal hierarchy, or a subjective sense of the tonic note

of the key, we used the following procedure to select corpus items from all possible progres-

sions generated by our grammars. Taking inspiration from Krumhansl (1990), we manipu-

lated the frequency of occurrence of each chord so that the tonic (I) was the most frequent,

followed by the dominant (V) and subdominant (IV), and then the remainder of the chords

(II, III, VI, VII). At the same time, we equalized the frequency of each of the possible chord

transitions from a given node (Table 1A, B). The resulting set formed the harmonic basis

for our A and B corpora.

The chord progressions for our two corpora were voiced as follows. Although each chord

was a tonal triad containing only three distinct pitch classes, progressions were voiced in

four parts (four notes per chord), with the root note of each chord appearing in two voices.

This allowed us to present the harmony clearly by always presenting the root in the bass

(A) (B)

Fig. 1. Two counterbalanced artificial chord-progression grammars. (A) System A. (B) System B.
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line, while still permitting any of the chord’s notes to appear in the melody. We used this

flexibility to create two distinct versions, or voicings, of each chorale, with similar bass lines

(modulo octave transposition) but varying upper voices, including the melody. Alternate

voicings of the same progression were constrained to begin and end on a different chord

tone and at a different pitch height. Basic principles of voiceleading were followed, includ-

ing reversal of direction and avoidance of large jumps (Narmour, 1991). To assess our

items’ adherence to these principles, we calculated the expected melodic complexity ratings

for the upper voice of each item using an empirically weighted sum of these factors (Eerola

& North, 2000; Eerola & Toiviainen, 2004). This score represents the ‘‘weirdness’’ of each

item’s melody. A paired t-test revealed no difference in this score between A and B items:

t(99) = 0.68, p > .05.2 In the end, each corpus contained 100 distinct exemplars, distributed

uniformly across keys. Two example items are illustrated in music notation in Fig. 2. MIDI

versions of all items are accessible on the Web at http://www.cogsci.rpi.edu/CSJarchive/

Supplemental/index.html

The test corpus consisted of 60 chord progressions that were not used in the exposure cor-

pora. These stimuli ranged from 5 to 10 chords in length and were distributed uniformly

across keys. Thirty of the progressions were ‘‘correct’’ items that were generated using one

of the grammars (15 from System A, 15 from System B), and 30 were ‘‘error’’ items (15

from System A, 15 from System B) containing one, two, or three illegal transitions (five of

each type per system). As in the exposure corpus, each test item within the System A group

(both correct and error) was the reverse of a comparable item in the System B group. Exam-

ples are illustrated in Fig. 3. Again, voiceleading principles relating to direction and smooth

contour were followed throughout. We calculated the melodic complexity of the upper

voices in each subset of items (both systems, correct and error). A mixed anova, with Error

Table 1

Transition probabilities for chords in the Phrygian system

e F G a b C d End

A. Transition probabilities within System A

e 0 0.17 0.17 0 0 0 0.17 0.50

F 0 0.50 0 0 0.50 0 0 0

G 0 0 0 0.42 0.58 0 0 0

a 1.00 0 0 0 0 0 0 0

b 0 0 0.41 0.29 0 0 0.29 0

C 0 0 0 0.50 0.50 0 0 0

d 0 0 0 0 0 1.00 0 0

B. Transition probabilities within System B

e 0 0 0 0.50 0 0 0 0.50

F 0.50 0.50 0 0 0 0 0 0

G 0.42 0 0 0 0.58 0 0 0

a 0 0 0.33 0 0.33 0.33 0 0

b 0 0.29 0.41 0 0 0.29 0 0

C 0 0 0 0 0 0 1.00 0

d 0.50 0 0 0 0.50 0 0 0
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treated as an independent samples variable and System treated as a repeated measure,

revealed no significant relationship between melodic complexity and either of the indepen-

dent variables, all ps > .05.

2.1.4. Procedure
Participants first listened to either the A or B exposure corpus. During the exposure

phase, they were asked to rate how much they liked each item on a seven-point Likert scale,

ranging from ‘‘didn’t like it at all’’ to ‘‘liked it a lot.’’ We included this manipulation to

(A) (B)

Fig. 2. Example items from the exposure corpora. (A) System A. (B) System B.

(A)

(C)

(B)

(D)

Fig. 3. Example items from the test corpora. (A) System A—Correct item. (B) System B—Correct item. (C)

System A—Error item. (D) System B—Error item.
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ensure that participants were attending to the exposure items. Participants were not told that

they would be tested following exposure.

The test phase immediately followed the exposure phase. Participants were told that they

would be presented with new items, some of which belonged to the same musical system as

the items they had heard during the exposure phase, and some of which did not. Their task

was to judge how similar each item was to the exposure corpus, using a seven-point Likert

scale ranging from ‘‘very dissimilar’’ to ‘‘very similar.’’ Six practice items preceded the 30

test items. There was no time limit given for the ratings, so the inter-stimulus interval (ISI)

varied depending on the amount of time subjects took to respond to each item.

2.2. Results and discussion

2.2.1. Analysis of variance
A preliminary mixed anova [Group (A-Exposed, B-Exposed) · System (A items, B

items) · Correctness (Correct items, Error items)] showed no differences between the

groups exposed to Systems A and B: The only significant effect involving the Group vari-

able was a System · Group effect such that higher ratings were given to test items reflecting

the system heard during exposure [F(1,38) = 42.26, p < .001]. We thus collapsed the data

from A-Exposed and B-Exposed subjects, recoding the System variable for each subject to

reflect whether an item was in his or her own exposure system, and performed a 2 · 2 anova

including within-subjects factors of Correctness (Correct, Error) and System (In-System,

Out-of-System). Individual listeners’ data were averaged across test items in each category

to give one score per cell per listener (see Fig. 4). There was a significant effect of System

[F(1,39) = 42.5, p < .001; MEXP = 4.5 (SD = 0.58); MUNEXP = 4.0 (SD = 0.69)], but no

other significant effects [all Fs < 1]. A reanalysis excluding the self-identified musicians

rendered the same pattern of results.

Fig. 4. Experiment 1: Similarity ratings (±1 SE) by item type (n = 40).
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These results confirmed our prediction that listeners can differentiate items that conform

to their exposure system from items that do not. Because System A and B items differed in

the serial order of their chords, but not in overall frequency content, we infer that listeners

were able to learn something about legal transitions between chords in the two systems.

However, listeners were unable to differentiate correct and error items within their exposure

system. This finding prevents us from investigating the depth of their serial knowledge more

fully; for instance, we cannot determine whether our participants were sensitive to chord-to-

chord transitions in general, or merely to information contained in the cadences, or phrase

endings, both of which could be used to separate A from B items. On the other hand, this

result does demonstrate that the error items are not inherently ‘‘worse’’ than correct items

for our listeners.

There are a number of possible reasons for our participants’ apparent failure to learn the

details of the exposure systems. One possibility has to do with the range of test items. If the

perceived difference between correct and error items is small, and the perceived difference

between within-system and other-system items is considerably greater, participants may be

inclined to focus on the larger distinction at the expense of the smaller. Another possibility

is that the exposure time (just 100 exposure sequences) was not sufficient for detailed learn-

ing. Although the first-order transition statistics are considerably simpler than those of Wes-

tern tonal music, the tonal hierarchy itself is somewhat novel, and this may increase the

difficulty of the learning problem.

We addressed these issues in Experiments 2 and 3. In Experiment 2, the test included

only within-system items (Correct vs. Error) in order to minimize the possibility of range-

compression effects. Experiment 3 then examined the effect of doubling the exposure time.

3. Experiment 2

In Experiment 2, we examined whether participants’ performance on the similarity

task could be improved by narrowing the range of test items with which they were pre-

sented. As in Experiment 1, our listeners first heard a corpus containing 100 within-sys-

tem items and were then asked to rate the similarity of each item in a test corpus to the

exposure corpus they had just heard. However, the test for these participants consisted

only of Correct and Error items taken from that same system. If Experiment 1 listeners’

failure to discriminate Correct from Error resulted primarily from distraction by the

greater dissimilarity of other-system items, removing these distractors should improve

discrimination.

3.1. Method

3.1.1. Participants
Forty undergraduates participated in Experiment 2 for course credit. The sample

contained 13 self-defined musicians and 27 self-defined nonmusicians. Participants reported

a mean of 4.54 years of experience performing music (SD = 4.23) and a mean of 0.85
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semesters studying music theory (SD = 2.91).3 Thirty subjects reported having taken zero

semesters of music theory.

3.1.2. Apparatus
Same as Experiment 1.

3.1.3. Stimuli
Same as Experiment 1.

3.1.4. Procedure
As in Experiment 1, participants were first exposed to a corpus of 100 phrases. Because

this was a pilot experiment, we began by exposing subjects only to one system, System A.

Unlike Experiment 1, all test items in this experiment were drawn from the exposure

system; that is, subjects were only asked to rate A-Correct and A-Error test items. Three

practice items preceded the test items.

3.2. Results and discussion

As in Experiment 1, there was no significant effect of correctness [t(39) = 0.68,

p = .50; MCOR = 4.15 (SD = 0.59); MERR = 4.10 (SD = 0.65)]. Again, a reanalysis

excluding all self-identified musicians rendered the same pattern of results. Because this

comparison was nonsignificant, we ended the pilot study without collecting data on a

B-Exposed group.

These results indicate that the range of test items presented in Experiment 1 cannot

by itself explain listeners’ failure to discriminate correct from incorrect items. After

one session of exposure, adults are still unable to indicate knowledge of the statistical

property of even a more restricted range of items. Accordingly, in Experiment 3, we

evaluated the hypothesis that increased exposure would enhance item discriminability.

In this experiment, we presented listeners with the full exposure corpus on two con-

secutive days, testing them only on the second day. Again, to guard against range

effects, we only asked listeners to rate test items originating from their exposure

system.

4. Experiment 3

Experiment 3 investigated whether increased exposure would enable participants to dis-

criminate Correct from Error items. This time, listeners came into the lab on two separate

occasions on consecutive days. During the first session, they were given only the exposure

task. In the second session, they were given both the exposure task and the test. As in Exper-

iment 2, only within-system items were included. We predicted that, given more time to

absorb the system’s regularities, listeners in this task would give higher similarity ratings to

Correct than to Error items.
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4.1. Method

4.1.1. Participants
Sixty-one undergraduates participated in Experiment 3 for course credit. One participant

was excluded from analysis because he did not complete the second session. The sample

contained 14 self-defined musicians and 47 self-defined nonmusicians. Participants reported

a mean of 5.0 years of experience performing music (SD = 3.8) and a mean of 1.4 semesters

studying music theory (SD = 3.5).4 Forty-one subjects reported having taken zero semesters

of music theory.

4.1.2. Apparatus
Same as Experiment 1.

4.1.3. Stimuli
Same as Experiment 1.

4.1.4. Procedure
Participants were exposed to one of two corpora of 100 phrases: System A or System B.

The exposure phase lasted two sessions, and in each of these sessions, listeners heard the

entire 100-phrase corpus once. Participants were tested at the end of the second exposure

section. Like Experiment 2, they received only the test items drawn from their own system:

A-Exposed subjects received only A-Correct and A-Error test items, and B-Exposed

subjects received only B-Correct and B-Error test items. Three practice items preceded the

test items.

4.2. Results and discussion

4.2.1. Analysis of variance
Preliminary analysis of variance showed no differences between the groups exposed to

Systems A and B (all group effect Fs < 1). We thus collapsed the data from A-Exposed and

B-Exposed subjects into within-system correct and error items, as in Experiment 1 (see

Fig. 5). Unlike Experiments 1 and 2, there was a significant effect of correctness

(t[59] = 4.13, p < .001; MCOR = 4.5 [SD = 0.71]; MERR = 4.2 [SD = 0.77]). Again, a

reanalysis excluding all self-identified musicians rendered the same pattern of results.

Taken together, the results of these three experiments suggest that given sufficient expo-

sure, adults are capable of using statistical information to distinguish between good and bad

exemplars of a particular style of music. We can be fairly confident that no intrinsic differ-

ences between correct and error items within the two systems can confound our interpreta-

tion, because the participants in Experiments 1 and 2 were unable to differentiate between

Correct and Error items. However, given additional exposure, the participants in Experiment

3 responded differentially to items with and without illegal transitions. Furthermore, while

the between-system discrimination evinced in Experiment 1 could be explained using

cadential information alone, such an explanation for the results of Experiment 3 is unlikely,
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as most of the illegal items in each system had legal final transitions, making cadential for-

mation a relatively insensitive cue.

4.2.2. Item analyses
Our intent in constructing these stimuli was to investigate listeners’ ability to learn the

chord transitions in a novel system of music. However, it may be objected that rather than

learning these chord transition probabilities, our learners might have listened for melodic

regularities instead. Using multiple regression, we examined the extent to which these fac-

tors can predict averaged subject judgments for each stimulus. To represent the harmonic

legality of each test item, we computed its average transitional probability (TP) by assessing

the probability of each of its chord transitions with respect to the relevant corpus and taking

the mean value. To evaluate the melodic ‘‘weirdness’’ of the test items, as we did for the

exposure items in Experiment 1, we again used Eerola and North (2000) weighted sum of

melodic expectancy factors to calculate the complexity of the top voice of each test item

(MelComp).

We submitted average similarity scores given to A items by A-Exposed listeners to a

two-variable regression, using TP and MelComp as predictors. Preliminary analysis of

Cook’s d and DFBETA values suggested the removal of three outlier items (Cohen, Cohen,

West, & Aiken, 2002). Our final model reached significance (F[2,24] = 5.85, p = .009;

R2
adj = .271). TP was a significant predictor, but MelComp was not (standardized bs:

bTP = 0.58, p = .003; bMelComp = 0.063, p = .72). Next, we likewise regressed average sim-

ilarity scores given to B items by B-Exposed listeners on TP and MelComp. We removed

three outliers with excessive Cook’s d and DFBETA values. Our final model reached signif-

icance (F[2,24] = 3.53, p = .045; R2
adj = .162). As in the A model, TP was a significant

predictor, but MelComp was not (standardized bs: bTP = 0.43, p = .03; bMelComp = 0.27,

Fig. 5. Experiment 2: Similarity ratings (±1 SE) by item type (n = 60).
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p = .15). These analyses support the hypothesis that listeners were able to make use of the

chord transitional probabilities in these artificial musical systems.

One might also wonder whether, within Error items alone, the recency of an unlikely

transition affected listeners’ judgments. For each error item, we determined the distance

between the last illegal transition and the end of the item. We used these values to predict

average similarity ratings of error items only, performing separate regressions for A and B

items. After the removal of one outlier from each model based on Cook’s d and DFBETA

statistics, both models were significant (System A: F[1,12] = 14.74, p = .002, R2
adj = .514;

System B: F[1,12] = 4.89, p = .047, R2
adj = .230). This provides additional evidence that

improbable chord transitions, particularly later in a sequence, can affect listeners’ responses

to music. It is possible that this finding reflects a recency effect on memory for errors. It is

also possible that the effect is due to key-finding. Each phrase was presented in a different

key, which meant that listeners needed to determine the key of each phrase in order to dis-

cern chord functions (I, V, etc). Since key-finding is best modeled as a process involving a

window of at least a few beats (Schmuckler & Tomovski, 2005), it seems plausible that key

percepts within these relatively short progressions might be more stable after at least a few

chords have passed. Given that the relevant statistics concerned within-key chord functions,

we would expect that errors that violate the TPs of the chord sequences would be most sali-

ent later in phrases, rather than earlier. A more detailed investigation of these competing

hypotheses, using larger test corpora, may be a fruitful direction for further research.

5. General discussion

The results of these experiments suggest that learners of a new musical system can rap-

idly learn to discriminate well-formed from ill-formed items, and that their judgments are

related to serial statistical properties of the newly learned system. In Experiment 1, subjects

were able to differentiate items from two new systems after a short exposure, but they were

unable to detect errors. We reduced the range of test items in Experiment 2, but this change

alone was not enough to enable discrimination of correct and error items. However, the

combination of reduced test item range and additional exposure provided in Experiment 3

allowed them to make this distinction, discriminating novel correct items from those con-

taining incorrect transitions. Notably, this successful discrimination cannot be due to inher-

ent preferences for particular test items, as participants in Experiments 1 and 2 failed to

make these same distinctions between correct and incorrect items.

What was important about the extra exposure that allowed our 2-day listeners to succeed

where others failed? Given the difference in tonal sophistication that has been reported

between experienced and inexperienced listeners (Castellano et al., 1984), one possibility is

that the extra exposure helped to solidify our 2-day listeners’ understanding of the new tonal

hierarchy. It is important to note that while extraction of some stable key structure from our

stimuli is probably necessary for consistent performance on our task, it is not imperative that

listeners center on any particular key structure. However, assimilation of the new data into

the tonal Western system would likely make the task harder, as its statistics conflict with
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those we wish subjects to learn. A deeper understanding of our Phrygian tonality, such as

might be generated by repeated exposures to the corpus, could help subjects to separate what

they know about the new system from their knowledge of Western music. A complementary

possibility, suggested by recent evidence about the role of sleep in memory consolidation

(Payne, Ellenbogen, Walker, & Stickgold, 2008), is that the relative timing of the two ses-

sions may have played a role. Provocative results with infants suggest that sleep may pro-

mote linguistic generalization (Gomez, Bootzin, & Nadel, 2006), and other types of implicit

musical learning have been shown to depend on sleep (Gaab, Paetzold, Becker, Walker, &

Schlaug, 2004). Further experiments are needed to disentangle these possibilities.

In this study, we set out to investigate whether cues thought to be useful in language

learning may also be helpful in acquiring musical structure. Specifically, we examined

listeners’ sensitivity to the predictability of pairs of harmonic elements, a process akin to

discovering predictive relationships between word categories—an important building

block of linguistic grammar. The predictive relationships we observed between the transi-

tion probabilities within a sequence, the recency of improbable transitions, and similarity

ratings suggest that listeners are attuned to the sequential statistics of chord functions,

implying that they are able to extract and use tonality information for understanding the

structure of new sequences. Importantly, we do not claim that the statistics of interest in

this experiment are the only relevant factors underlying subjects’ musical knowledge.

Clearly, ‘‘correctness’’ within a particular idiom depends on many additional factors. In

Western music, these may include melodic continuity, rhythmic regularity, higher-order

harmonic transitional probabilities, harmonic rhythm, the clarity and independence of

inner-voice movement, and the metrical location of salient chords, among others (e.g.,

Krumhansl et al., 2000; Lerdahl & Jackendoff, 1983). However, first-order transitional

probabilities are one cue that may be useful when learning harmonic structure, even after

a short exposure.

Having drawn a comparison between the mechanisms used to learn language and music,

we must now face the question of what we mean by the word ‘‘mechanism.’’ This work-

horse term in cognitive science can refer either to an algorithm used for problem solving

or to the neural hardware over which such an algorithm is implemented. The results of

these experiments do not compel one to accept either interpretation. It is conceivable, and

in fact quite plausible, that similar algorithms for tracking the mutual predictability of ele-

ments are implemented throughout diverse regions of the brain, and perhaps are used for

distinct purposes in each (Conway & Christiansen, 2005). On this view, different but

parallel learning mechanisms may subserve musical and linguistic learning. Certainly, the

preponderance of evidence on primary auditory processing of musical and linguistic

sounds by nonmusicians suggests that, at least in the early stages, some separation of func-

tion is the norm (Tervaniemi et al., 1999; Tervaniemi et al., 2000). However, there is also

evidence to suggest some overlap in the usage of cortical tissue to process the well-

formedness of sequences, be they linguistic or musical (Maess et al., 2001; Patel et al.,

1998). Further research using imaging techniques to examine the neural substrates underly-

ing the acquisition of musical and linguistic structural knowledge may shed further light

on the extent to which the faculties responsible for these two competencies overlap.
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Notes

1. Throughout the paper, we use capital numerals to refer to major, minor, and dimin-

ished chords.

2. Because of the constrained relationship between A and B items (viz., each B item is

the reverse of one A item), this and all similar tests were treated as paired compari-

sons.

3. This value was inflated by one outlier who reported having studied for 18 semesters.

4. This value was inflated by two outliers who reported having studied for 14 semesters

or more.
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