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Abstract

Human social, cognitive, and linguistic functioning depends on skills for rapidly processing
action. Identifying distinct acts within the dynamic motion flow is one basic component of
action processing; for example, skill at segmenting action is foundational to action categori-
zation, verb learning, and comprehension of novel action sequences. Yet little is currently
known about mechanisms that may subserve action segmentation. The present research doc-
uments that adults can register statistical regularities providing clues to action segmentation.
This finding provides new evidence that structural knowledge gained by mechanisms such as
statistical learning can play a role in action segmentation, and highlights a striking parallel
between processing of action and processing in other domains, such as language.
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1. Introduction

We are an intensely social species: social engagement permeates our daily lives,
and interactions with others pervasively shape our physical and emotional well-
being. Successful social functioning in everyday life depends crucially on skills for
quickly and accurately analyzing the actions others are undertaking. Countless times
in any given day we must make rapid judgments about others’ current and likely
future actions in order to engage with them effectively. Rapid, skilled processing
of action1 is also foundational to our general cognitive and linguistic functioning.
In particular, our analysis of others’ actions enables us to gain information about
the world more generally – for example, information such as the safety, desirability,
and functional properties of objects. As well, skill at action processing plays a crucial
role in our ability to formulate linguistic descriptions of events we witness, as well as
in building representations of the descriptions that others provide for us. It is obvi-
ous that cognitive and perceptual mechanisms of substantial complexity make skilled
action processing possible (e.g., Blakemore & Decety, 2001; Frith & Frith, 1999), yet
much remains to be learned about the nature of such mechanisms.

At the surface level, action is complex: Our bodies travel rapidly among a myriad
of objects that we manipulate in diverse and often novel ways. One fundamental
problem observers must solve in processing action is segmentation. In everyday
action, our behavior tends to flow continuously, with few pauses to mark meaningful
boundaries between distinct acts (Asch, 1952; Heider, 1958; Newtson & Enquist,
1976). Identifying distinct acts within the dynamic flow of motion is a basic require-
ment for engaging in further appropriate processing of the behavior stream. Among
other things, extracting action segments is necessary to identify the kinds of action
being undertaken (e.g., grasp, push, pull), to register novel combinations of known
actions, and to learn words that label actions.

Prior research clarifies that adults readily segment continuous intentional action.
If asked to indicate meaningful breakpoints in continuous, everyday action, adults
agree about where boundaries separating distinct actions lie (e.g., Newtson, 1973),
they can make such judgments at multiple levels within a hierarchy (e.g., Hard, Loz-
ano, & Tversky, under review; Tversky, Zacks, & Martin Hard, in press; Zacks et al.,
2001; Zacks & Tversky, 2001), and their judgments about such boundaries tend to
coincide with their analysis of the intentions that actors are carrying out (e.g., Baird
& Baldwin, 2001; Hard, Tversky, & Lang, in press; Zacks, 2004). For example, in the
case of everyday actions such as kitchen clean-up, observers readily identify relevant
segments at a fairly fine-grained level (including acts such as grasping a dish, grasp-
ing a faucet handle, and twisting the faucet handle), as well as at higher levels (e.g.,
washing a dish, hanging a towel), linked in a hierarchy to the smaller-action seg-
ments. Boundaries between actions emerge as psychologically relevant in both recall
and on-line processing of dynamic action, and segmentation occurs spontaneously,

1 In using the term ‘‘action,’’ we are referring to the physical activity that people engage in as a route to
fulfilling intentions and goals. We use the term ‘‘act’’ as a variant of ‘‘action.’’
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even when not in any way necessary to the task at hand (e.g., Loucks & Baldwin,
2006). Even infants display some basic skill at segmenting dynamic human action
(e.g., Baldwin, Baird, Saylor, & Clark, 2001; Saylor, Baldwin, Baird, & LaBounty,
2007). Finally, specific neurophysiological sites have recently been identified as active
in segmentation of dynamic human action (Zacks et al., 2001; Zacks, Swallow, Vet-
tel, & McAvoy, 2006). Together, these existing findings indicate that skill at detecting
action segments plays a key role in processing of dynamic human activity. At the
same time, as yet the available findings have provided little insight into the specifics
of how observers of dynamic action identify relevant action segments within a con-
tinuous behavior stream. That is, the mechanisms enabling adults to extract seg-
ments from a continuous flow of activity have not been known.

There is reason to believe that a variety of processes operate in adults’ action seg-
mentation (e.g., Baird & Baldwin, 2001; Baldwin & Baird, 2001; Hard et al., in press;
Newtson, Enquist, & Bois, 1977; Zacks, 2004). High-level ‘‘top-down’’ knowledge
about the kinds of goals, intentions, and associated actions that are likely in given
contexts should facilitate segmentation. For example, our prior knowledge about
the kinds of goals and intentions often acted upon in kitchens leads us to expect seg-
ments such as dish-washing and returning items to cupboards and refrigerator. Such
expectations, which include causal knowledge of motions requisite to satisfy inten-
tions and goals, should assist us in identifying where such actions begin and end
within the behavior stream.

Other kinds of knowledge that are more structural in kind might work in concert
with high-level knowledge of intentions and goals to assist adults in segmenting contin-
uous human action. The pursuit of everyday goals seems to introduce structured pat-
terns into the flow of motion that actors produce (e.g., Newtson et al., 1977). If
observers can detect structural regularities withinmotion that happen to correlate with
the initiation/completion of individual intentional acts, this could assist them in seg-
menting the behavior stream independent of any high-level knowledge about the inten-
tion/goal content of the activity underway. The present research investigates one kind
of structural knowledge – knowledge of sequential probabilities2 – that people may be
able to exploit to assist in discovering segments within dynamic human activity.
Although we think it likely that intention/goal knowledge and structural knowledge
work in concert to achieve segmentation in normal processing of everyday action, gain-
ing definitive evidence for structural knowledge requires that any contribution from
intention/goal content be eliminated as a source of information about the action seg-
ments at issue. This is thus the strategy we pursued in the present research.

1.1. Statistical learning could facilitate action segmentation

Statistical regularities could potentially be of assistance for identifying segmental
structure within dynamic activity because some small-scale acts (e.g., grasp knife,

2 In using the term ‘‘sequential probability,’’ we are referring to the probability that Y follows X,
computed by dividing the frequency of XY by the frequency of X. This provides a measure of how tightly
linked X and Y are.
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slice with knife) within the stream of behavior co-occur more frequently than others.
Such sequential probabilities likely arise, at least in many cases, because the small-
scale acts involved are causally linked in achieving a goal (e.g., in preparing stew,
the motion of slicing a vegetable is frequently preceded by the motion of grasping
a knife, whereas slicing a vegetable is only infrequently preceded by grasping a refrig-
erator door). It is likely, of course, that knowledge of the intentions, goals, and rel-
evant causal motions on the observer’s part would help to ‘‘bind’’ some adjacent
actions together as a unit in the observer’s processing. For example, knowing that
(a) knives are useful for chopping carrots, (b) chopping speeds cooking, and (c) kni-
ves have little causal relevance to refrigerators, could help to make knife grasping
and carrot chopping cohere, while refrigerator grasping and carrot chopping do
not. However, even in the absence of relevant causal/intentional knowledge, sensitiv-
ity to the concomitant statistical regularities themselves might enable observers to
group small-scale segments into relevant higher-level action bundles. Put another
way, from the observer’s point of view, a history of low sequential probabilities
for two adjacent small-scale acts is a potential clue to segmentation at a higher level;
that is, low sequential probabilities predict boundaries between distinct higher-level
actions.

These ideas initially arose on analogy with recent findings in the language domain.
Segmenting language, like action, requires discovering segments within a complex,
dynamic stimulus stream. Human infants as well as adults can detect ‘‘word’’-level
segmental structure within a novel stream of syllables (small-scale segments that
are familiar and readily extractable) via sensitivity to sequential probabilities across
syllables (e.g., Saffran, Aslin, & Newport, 1996; Saffran, Newport, Aslin, Tunick, &
Barrueco, 1997). Perhaps adults can similarly exploit statistical structure to discover
higher-level segmental structural within a novel stream of dynamic activity.

Evidence for statistical learning in the visual domain lends plausibility to this
hypothesis, given the strongly visual nature of action processing. A sizable body
of research now indicates that infants as well as adults readily learn to detect predict-
able combinations (either temporal or spatial) of visual elements in arbitrary, novel
displays (e.g., Fiser & Aslin, 2002a, 2002b; Hunt & Aslin, 2001; Turk-Browne,
Jungé, & Scholl, 2005). On the other hand, however, it is difficult to generalize
directly from this research to processing of human action. For one, detecting statis-
tical regularities among simple visual shapes is very different from discovering regu-
larities in extended displays of human activity. As well, considerable research
suggests mechanisms for processing human action may be specialized in at least
some respects (e.g., Shiffrar & Freyd, 1990); thus caution is warranted in generalizing
from existing research on visual statistical learning to the domain of human action.
A different reason for caution concerns the nature of the task used in many studies.
Swallow and Zacks (submitted for publication) have made the point that paradigms
such as the serial reaction-time task (e.g., Cohen, Ivry, & Keele, 1990; Nissen & Bull-
emer, 1987) – used in many demonstrations of visual statistical learning – involve
learning linkages between predictably recurring visual elements and specific motor
responses, with no way of determining the extent to which findings specifically reflect
learning about regularities in the visual displays. Hence findings from the serial reac-
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tion-time task are not necessarily directly informative regarding adults’ ability to
exploit statistical structure to segment the stimulus stream, which is the question
of interest in the present research. Of course, studies of visual statistical learning
were undertaken with very different aims than the present research, making it unsur-
prising that they do not clarify whether statistical learning skills might support
action segmentation. In sum, the present research extends existing findings regarding
visual statistical learning to examine whether adults can bring statistical learning
skills to bear on dynamic action in ways that would support action segmentation.

Pioneering research by Avrahami and Kareev (1994), motivated by an insight very
similar to the present hypothesis, documented that adults can learn to identify units
within a semi-arbitrary sequence of events (e.g., randomly ordered clips from Road-
runner and Coyote cartoons) based solely on patterns of co-occurrence in their prior
experience with a continuous sequence of those clips. These seminal findings further
increase the plausibility of our hypothesis. At the same time, however, there are a
number of reasons for questioning whether the Avrahami and Kareev research
resolves the question of whether adults are sensitive to segmentation-relevant statis-
tical structure in human action. First, the Avrahami and Kareev research employed
highly artificial stimuli; for instance, several studies utilized cartoon animations. A
third study employed a black-and-white studio film (a Jacques Tati holiday-at-the-
seaside comedy); however, given the staged nature of action in studio films and
the editing that yields shifts between individuals and scenes, such films of course
depict something rather different from naturalistic human action. The events Avrah-
ami and Kareev employed were also unnatural in the sense that the clipping and
recombining procedure they used to generate stimuli would seem to have created
physically impossible junctures between event units. A different issue is that the
manipulations Avrahami and Kareev introduced may have enhanced grouping in
the measures they report because these manipulations affected psychological mean-
ingfulness rather than statistical learning, per se. Gaining evidence for statistical
learning was not Avrahami and Kareev’s express purpose, and thus they did not
introduce control procedures specifically to counter the role of meaningfulness, as
we did in the present research. Finally, for much the same reason, Avrahami and
Kareev did not employ the statistical-learning techniques (e.g., Hunt & Aslin,
2001; Saffran et al., 1997) that have become standard in recent years. All in all, it
is difficult to know both whether their findings (a) generalize to processing of every-
day human action and/or (b) reflect the operation of statistical learning mechanisms
in any way comparable to those that appear to operate in language and other aspects
of visual processing.

2. Experiment 1

Experiment 1 provided a first test of whether sensitivity to statistical regularities
within a novel string of small-scale acts (henceforth called ‘‘motion elements’’)
enabled adults to ‘‘bind together’’ regularly co-occurring motion elements into
higher-level, coarse-grained segments (henceforth called ‘‘actions’’) within the con-
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tinuous flow of motion. To do this, we modified the recently innovated statistical-
learning methodologies that were developed to test this issue in the language domain
(e.g., Saffran et al., 1996, 1997). The basic approach adopted in such research has
been to present observers with novel sequences of syllables (e.g., go, la, bu, tu, pi,
ro, bi, da, ku, pa, do, ti) in which statistical regularities, supplying the only available
clue to segmentation, were directly manipulated. For example, the sequence would
be composed of four tri-syllabic combinations (e.g., go-la-bu, tu-pi-ro, bi-da-ku,
and pa-do-ti) that were randomly intermixed across the exposure corpus, meaning
la followed go and bu followed la with a transitional probability of 1.0, whereas tu
followed bu with an average transitional probability of only .30.

Bringing this methodology to the action domain involved creating digitized video
clips of twelve different motion elements. In constructing these motion elements, we
opted to utilize everyday intentional actions, filmed in an uncluttered context with
only a few everyday objects. To this end, each of the twelve different motion elements
(e.g., pour, poke, clink) we employed involved action on a bottle plus, in some cases,
another nearby object. These motion elements could be recombined in any sequence
with the resulting stream of activity seeming fairly natural (no physical or bodily
laws or constraints were violated). To achieve this, each clip began and ended with
the actor’s body in the same position. Via random selection, four three-motion-ele-
ment combinations were selected (henceforth to be called ‘‘actions’’), and these
‘‘actions’’ were then randomly intermixed to create a continuous, silent 20 min dig-
itized video (henceforth to be called the ‘‘exposure corpus’’).

Motion within the exposure corpus was continuous. However, the individual
motion elements (e.g., pour, poke, clink) within the exposure corpus were familiar
to observers and readily extractable as segments (just as the syllables in the language
research described earlier were presumed to be readily segmentable and familiar to
both adult and infant listeners). At the same time, combinations of these motion ele-
ments were novel to observers and held no obvious causal or intentional significance.
To illustrate, a sequence in which (a) the actor scrubbed the base of the bottle on a
sponge, then (b) inserted the bottle into a nearby glass, and then (c) took a drink
from the bottle, had no obvious meaning from a causal or intentional standpoint
at the level of the motion-element triad. Again, then, the sequence of motion ele-
ments in the exposure corpus was both novel and not inherently meaningful (and
recall that co-occurring motion elements were randomly selected). These features
of the exposure corpus were a crucial aspect of our methodological approach: the
novelty and relative meaninglessness of the ‘‘actions’’ (predictably co-occurring tri-
ads of motion elements) rendered adults unable to utilize any preformulated knowl-
edge or inferences about intentions and goals to discover these ‘‘action’’ segments
within the continuously streaming exposure corpus. Thus sequential probabilities
across the motion elements within the stream supplied the only available clue for
identifying higher-level ‘‘action’’ segments. Although we are inclined to think that,
in everyday life, pre-existing conceptual knowledge of intentions, goals, and causes
contributes to action segmentation, it was important to rule out influence of such
causal/intentional knowledge on action segmentation within the context of these
experiments in order to definitively demonstrate a possible role for statistical learn-

D. Baldwin et al. / Cognition 106 (2008) 1382–1407 1387



ing in adults’ initial discovery of ‘‘action’’ segments within the stream of dynamic
activity.

One additional methodological control was included to further ensure that inher-
ent causal/intentional meaning or significance of the motion-element triads (the
‘‘actions’’) was not assisting adults in their discovery of actions within the exposure
corpus. We created two different exposure corpora, with participants experiencing
just one or the other of these corpora. In particular, the combination of motion ele-
ments selected to co-occur (i.e., the ‘‘actions’’) in one exposure corpus served as the
foil combinations (e.g., the ‘‘non-actions,’’ see detailed description below) in the
other exposure corpus. If participants during a test phase could successfully discrim-
inate ‘‘actions’’ from ‘‘non-actions,’’ regardless of which exposure corpus they
encountered, this would provide clearcut reassurance that the ability to identify
‘‘actions’’ was a result of sensitivity to statistics within the exposure corpus, and
not a result of any inherent causal/intentional meaningfulness of the ‘‘actions.’’

The statistical learning methodology we employed enabled us to examine whether
sensitivity to sequential probabilities alone enables adults to discover segments of
which they had no prior knowledge within a novel sequence of motion elements.
Findings from this research would not directly clarify that adults deploy a statisti-
cally-based segmentation strategy in their on-line processing of human action (as is
also a limitation in research documenting statistical learning in the language
domain). This is an interesting issue for future research. That said, this research
had the potential to provide the first direct documentation to date that structural
knowledge has the potential to support segmentation of dynamic human action.

2.1. Methods

2.1.1. Participants
Twenty-four undergraduates (12 female and 12 male, with equal numbers of

females and males experiencing each of the stimulus sets) received course credit
for participation in the research.

2.1.2. Materials
2.1.2.1. Exposure corpus. A given participant viewed an exposure corpus comprised
of multiple repetitions of 12 video clips, with each clip depicting some kind of small
motion (e.g., stack, poke, drink) involving a blue bottle, green glass, and/or yellow
sponge. Each video clip began and ended with the actor and objects in virtually
the same position (as close to identical as a human actor could achieve), enabling
us to link any video clip with any other video clip. Video clips ranged in length from
2.2–4.3 s, M = 3.3 s at their actual filmed rate. Fig. 1 displays still images that depict
just one frame from the video clip of each small motion-element (for illustrative pur-
poses we selected the particular still frames that, in our judgment, best captured the
unique identity of each motion element, but participants in the research of course
viewed the full video clips from which these still frames were extracted).

Via random selection we created four three-motion ‘‘action’’ combinations (e.g.,
‘‘actions’’ in one set (A) were stack-poke-drink, blow-touch-rattle, pour-inspect-peek,
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insert-clink-scrub). As noted earlier, the use of random selection meant that the
‘‘actions’’ created via the three-clip combinations were no more inherently sensible
nor familiar than any other possible combinations of video clips from the twelve-
motion inventory we were working with. This was an important methodological fea-
ture of the research, ensuring that participants would have no prior causal/inten-
tional knowledge or expectancies that could assist them in discovering action
segments.

The four ‘‘actions’’ were then ordered randomly (with the stipulation that the
same ‘‘action’’ never recurred in immediate succession) to create the 20 min exposure
corpus. Each ‘‘action’’ occurred just 28 times (with 112 ‘‘actions’’ overall) in the
exposure corpus. The only clues to ‘‘action’’ boundaries within each exposure corpus
were the sequential probabilities between adjacent motion elements, which were
higher within ‘‘actions’’ (1.0 in all cases; for example, stack-poke) than between
‘‘actions’’ (averaging 0.33; for example, drink-pour). Fig. 2 displays still frames
selected to illustrate the flow of behavior within a small portion of the exposure cor-
pus in one set (A).

Fig. 1. Illustrative still-images extracted from each video clip utilized in the exposure corpus across all sets
in Experiments 1 and 2. The four rows of three images (viewing left to right) depict the four ‘‘actions’’ from
set A.
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For all adjacent motion elements throughout the entire exposure corpus, Macin-
tosh iMovie software (Apple, Inc., Cupertino, CA) ‘‘overlap’’ transitions were used
to smooth the shifts from one video clip to the next. As described earlier, the actor’s
position at the beginning and end of each video clip was as close to identical as could
be achieved (still frames in Fig. 2 illustrate the degree of similarity). The transitions
helped to smooth across the small degree of discrepancy that remained, yielding the
general sense of a flow of behavior. The identical transition was used to link all video
clips, regardless of whether the clips were part of the same ‘‘action’’ or not. Thus the
quality of transitions themselves did not provide any information about segment
boundaries.

If the exposure corpus were to begin at an ‘‘action’’ onset and/or end at an
‘‘action’’ offset, this in itself would provide a possible clue to segment boundaries.
For this reason, in all cases the exposure corpus began and ended with a segment-
internal small motion-element.

Two exposure corpora, sets A and B, were created using the method thus far
described. As described briefly earlier, the only difference between the two corpora
was the ordering of video clips within ‘‘actions’’; in particular, sequences that served
as ‘‘actions’’ in set A were ‘‘non-actions’’ in set B, and vice versa (see next section
regarding test stimuli for further details). This set manipulation was another impor-
tant design feature that helped to ensure that adults’ ability to extract and recognize
‘‘action’’ segments arose from statistical regularities embedded in the exposure cor-
pus and did not stem artifactually from fortuitous naturalness or meaningfulness of

Fig. 2. Illustrative still-images depicting the flow of events within a small portion of the exposure corpus
from set A used in Experiments 1 and 2. Images should be ‘‘read’’ from left to right beginning at the top
row.
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some combinations of motion elements. The ordering of ‘‘actions’’ in sets A and B
was yoked, such that each occurrence of a particular ‘‘action’’ in set A was linked
to the occurrence of a yoked ‘‘action’’ in set B (e.g., set B ‘‘actions’’ were touch-
inspect-poke, rattle-peek-pour, blow-clink-stack, scrub-insert-drink and touch-inspect-
poke in set B occurred in the same position that stack-poke-drink occurred in set A).

2.1.2.2. Test stimuli. The purpose of the test stimuli was to probe adults’ sensitivity to
the statistical structure of the exposure corpus. Test stimuli consisted of 16 sequen-
tially presented pairs, with each pair contrasting one ‘‘action’’ (e.g., as in the prior
example: stack-poke-drink) with one ‘‘non-action.’’ ‘‘Non-actions’’ were sequences
containing motions adults had observed in the exposure corpus, but never in this
particular combination (e.g., in set A, touch-inspect-poke, as depicted in Fig. 3).
The ‘‘action’’ and ‘‘non-action’’ within a pair of test stimuli were separated by a
500 ms black screen.

Sequential probabilities between the motion elements in ‘‘non-actions’’ were all
zero relative to the exposure corpus, because these pairings had never occurred. In
contrast, sequential probabilities of video clips within ‘‘actions’’ were all 1.0. One
test-videotape was generated in which a random ordering of the 16 pairs was
selected, with half of these pairs depicting the ‘‘action’’ first and the ‘‘non-action’’
second. A second test videotape was created that maintained the same order of pairs,
but reversed the ordering within pairs (e.g., if the ‘‘action’’ had preceded the ‘‘non-
action’’ within a given pair in the first videotape, this ‘‘non-action’’ preceded the
‘‘action’’ for this pair in the second videotape). These counterbalancing precautions
ensured that a possible response bias favoring the first or second clip within a pair
could not be the source of an ability on adults’ part to discriminate the ‘‘actions’’
from the ‘‘non-actions.’’ The same two test videotapes employed for adults partici-
pating in set A were also employed for set B (given that ‘‘actions’’ in set A were

Fig. 3. Illustrative still-image examples of test stimuli in set A used in Experiments 1 and 2.
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‘‘non-actions’’ in set B, and vice-versa), with correct responding on a given test vid-
eotape corresponding to selection of opposite alternatives across the two sets.

2.1.3. Procedure
Participants in all experiments were asked to watch the exposure corpus and told

they would subsequently be tested for memory of what they saw, but they were not
given any indication regarding which aspects of the corpus the testing might concern.
We opted to inform them about subsequent testing in order to ensure that they were
motivated to watch the full exposure corpus (which was lengthy and repetitive).
After viewing the exposure corpus they then were given several response-training tri-
als, orienting them to use of the response sheet to be used in the test phase. These
training trials involved paired action sequences depicting actions entirely unrelated
to those depicted in the exposure corpus. In the test phase proper, adults were asked
to select the member of each pair that they remembered having seen on their previ-
ous viewing. Half of the participants (12) viewed the set A exposure corpus, and half
the set B exposure corpus. Within each set, half of the participants (6) provided
responses with each of the two test videotapes.

2.2. Results and discussion

Collapsing across sets and test videotapes, adults discriminated ‘‘actions’’ from
‘‘non-actions’’ 80% (SD = 23) of the time, a rate significantly greater than predicted
by chance (one-sample t(23) = 6.4, p < .0001) (see Fig. 4).

Eighteen of the 24 participants selected ‘‘actions’’ more frequently than ‘‘non-
actions’’ (i.e., on nine or more of the 16 test trials), which was significantly greater
than chance by a binomial test, p < .01. Performance was significantly better for

Fig. 4. Participants’ mean percent accuracy in discriminating ‘‘actions’’ from foils (either ‘‘non-actions’’ or
‘‘part-actions’’, depending on the experiment) across all four experiments.
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set A than set B (t(22) = 2.3, p < .05). However, when each of the sets was considered
separately, in each set adults discriminated ‘‘actions’’ from ‘‘non-actions’’ at greater-
than-chance rates, paired t’s(11) = 6.9 and 3.1, one-tailed p’s < .001 and .01 for sets
A and B, respectively. Given the counterbalancing across sets, adults’ selection of
‘‘actions’’ could not have arisen solely from greater salience of, or any general pref-
erence for, those sequences relative to the ‘‘non-action’’ sequences.

These findings confirmed that adults detect sequential probabilities among
motion elements within a novel sequence of intentional action based on relatively
brief exposure. However, a more stringent test of adults’ skill at tracking seg-
mentation-relevant sequential probabilities within the same stimulus stream could
be undertaken: one in which adults are asked to discriminate ‘‘actions’’ (recur-
ring sequences of motion elements) from combinations of small motion-elements
that span action boundaries (called ‘‘part-actions’’). This would be a more strin-
gent test of adults’ ability to detect statistical regularities within the exposure
corpus because, unlike ‘‘non-actions,’’ participants in fact encountered ‘‘part-
action’’ combinations within the exposure corpus. If adults indeed can utilize
sequential probabilities as a clue to action segmentation, ‘‘part-actions’’ should
be perceived as violating the segmental structure they had discovered within
the exposure corpus, and thus we predicted that they should select ‘‘actions’’
rather than ‘‘part-actions’’ on the post-hoc discrimination task. Experiment 2
tested this prediction.

3. Experiment 2

The second experiment investigated adults’ ability to distinguish ‘‘actions’’
from recurring sequences of motion that span action boundaries but have lower
sequential probabilities. To take a real-world example, consider a motion
sequence in which someone grasps a cream pitcher, pours cream into coffee
and then fluidly moves to pick up a telephone receiver to make a phone call.
In this example, discriminating ‘‘actions’’ from ‘‘part-actions’’ would involve dis-
tinguishing the sequence grasp cream-pitcher/pour cream (constituting the
‘‘action’’ segment cream coffee) from the sequence pour cream/grasp telephone
(a ‘‘part-action’’ spanning portions of the cream coffee and phone call segments).
As in Experiment 1, participants viewed one of two exposure corpora prior to
being tested on their ability to discriminate ‘‘actions’’ from ‘‘part-actions,’’ with
the ‘‘actions’’ in one exposure corpus serving as ‘‘part-actions’’ in the other, and
vice versa.

3.1. Methods

3.1.1. Participants
Twenty-four undergraduates (12 female and 12 male, with equal numbers of each

gender experiencing each stimulus set) received course credit for participation in the
research.
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3.1.2. Materials
3.1.2.1. Exposure corpus. Adults viewed an exposure corpus in one of two counterbal-
anced sets (A and C), with ‘‘actions’’ in the exposure corpus of set A serving as ‘‘part-
actions’’ in the exposure corpus of set C, and vice versa. ‘‘Actions’’ in set A were stack-
poke-drink, blow-touch-rattle, insert-clink-scrub, and pour-inspect-peek, and in set C
were drink-blow-touch, clink-scrub-pour, rattle-stack-poke, and inspect-peek-insert.

3.1.2.2. Test stimuli. Test videotapes were constructed as in Experiment 1, except that
pairs of test stimuli contrasted ‘‘actions’’ with ‘‘part-actions’’ (sequences that partic-
ipants had actually seen in the exposure corpus that included three video clips span-
ning ‘‘action’’ boundaries; in set A, for example, drink-blow-touch, as depicted in
Fig. 3). In particular, two videotapes of 16 pairs of test stimuli were constructed
(used in both sets), this time exhaustively pairing the four ‘‘actions’’ with four
‘‘part-actions.’’ Across the two videotapes, the order of ‘‘actions’’ versus ‘‘part-
actions’’ within test pairs (i.e., first vs. second) was counterbalanced.

Within ‘‘part-actions,’’ one pair of adjacent clips had average sequential probabil-
ities of 0.33, and the other two adjacent clips had sequential probabilities of 1.0,
yielding an overall average co-occurrence frequency of 0.67 for ‘‘part-actions,’’ ver-
sus an overall average co-occurrence frequency of 1.0 for ‘‘actions.’’

3.1.3. Procedure
The procedure was comparable to that of Experiment 1 except that test item pairs

involved discrimination between ‘‘actions’’ and ‘‘part-actions’’ (rather than
‘‘actions’’ and ‘‘non-actions’’ as in the first experiment).

3.2. Results and discussion

Discriminating ‘‘actions’’ from ‘‘part-actions’’ ought to be more challenging than
the discrimination task in Experiment 1 regarding ‘‘actions’’ versus ‘‘non-actions’’
because overall sequential probabilities for video clips in ‘‘part-actions’’ were sub-
stantially greater than zero. Despite the potential difficulty of the discrimination
task, adults systematically selected ‘‘actions’’ more frequently than ‘‘part-actions’’
(M = 72%, SD = 24; one-sample t(23) = 4.5, p < .001). This level of performance
did not differ significantly from discrimination of ‘‘actions’’ versus ‘‘non-actions’’
in the first experiment (see Fig. 4). As well, as in Experiment 1, 18 of the 24 partic-
ipants in Experiment 2 selected ‘‘actions’’ more frequently than ‘‘part-actions’’ (i.e.,
on nine or more of the 16 test trials), which was significantly greater than chance in a
binomial test, p < .01. No significant difference between sets A and C emerged in dis-
criminating ‘‘actions’’ from ‘‘part-actions.’’ In sum, even though low-frequency adja-
cencies were presented as part of the same ‘‘unit’’ in the test-stimuli (given the
bracketing of ‘‘part-actions’’ from ‘‘actions’’ by 500 ms black screens within a given
test pair), participants were disinclined to select these ‘‘part-action’’ units in the test
phase. Instead, test-stimuli including high-frequency adjacencies that had been
bounded by low-frequency adjacencies in the exposure corpus (‘‘actions’’) were
selected at relatively high rates.
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We predicted that adults would be able to discriminate ‘‘part-actions’’ from
‘‘actions’’ because ‘‘part-actions’’ should be perceived as violating the segmental
structure that adults had discovered within the exposure corpus via tracking of
sequential dependencies. That said, adults’ skill at discriminating ‘‘part-actions’’
from ‘‘actions’’ can be accounted for by their having detected joint probabilities of
just two adjacent small motion-elements. In other words, adults need not necessarily
have extracted the full three-element triads to have succeeded at the task. At the very
least, then, the Experiment 2 findings clarify that adults utilized sequential probabil-
ities to extract segments composed of two adjacent small motion-elements. Addi-
tional probes, such as those pioneered by Aslin and colleagues (e.g., Aslin,
Saffran, & Newport, 1998; Fiser & Aslin, 2002a, 2002b) in domains including lan-
guage, tone sequences, shape sequences, spatial arrays, and visuomotor tasks, will
be needed to clarify whether extraction of full triads or of higher-order statistics such
as conditional probability play a role in the statistical learning adults display in
action processing. In any case, however, the findings of Experiment 2 clarify that
adults succeeded in detecting and remembering particular groupings of small
motion-elements. Such sensitivity (a) gives them a basis on which to segment novel
action scenarios for which no other clues to segmentation are on offer, and (b) might
assist their segmentation in everyday action processing.

4. Experiment 3

While interesting, findings from Experiments 1 and 2 do not warrant ready gen-
eralization of adults’ statistically-based segmentation skills to the processing of
everyday action, in part because the action sequences used in those experiments
involved repeated viewing of identical instances. In the real-world context, of course,
instances of any given action sequence are rarely, if ever, identical. Rather, everyday
intentional action exhibits substantial variability: Across occasions, for example, a
grasping motion is performed at varying rates, with different hands, on different
objects in different locations with respect to the body, and with different hand/finger
configurations. It will ultimately be important to determine how effectively statistical
learning guides segmentation in the face of such variability.

One step to take in bringing the statistical learning paradigm closer to accounting
for real-world processing is to examine whether adults can detect statistical structure
across categories of similar, but not identical, instances of small motion-elements.
Statistical learning for simple visual shapes (e.g., Turk-Browne et al., 2005) and at
least some aspects of language (e.g., Gerken, Wilson, & Lewis, 2005; Gomez & Ger-
ken, 1999; Thompson & Newport, 2007) encompasses this level of skill, making it
seem plausible for the action domain as well. Experiment 3 thus tested whether
adults can discover such category-based ‘‘actions’’ and subsequently discriminate
them from category-based ‘‘part-actions’’ (combinations of small motion-elements
that span the boundary between two ‘‘actions’’ in the exposure corpus). Such a find-
ing would further bolster the plausibility of statistical learning as a mechanism sub-
serving segmentation of everyday action.
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4.1. Methods

4.1.1. Participants
Seventeen undergraduates (nine male and eight female; set A: four female, five

male; set C: three female, five male) received course credit for participation in the
research. Data from one participant was eliminated due to being a clear outlier (per-
formance was different by more than 2.5 standard deviations from the mean of the
other participants). This participant’s data were replaced by that of the seventeenth
participant.

4.1.2. Materials
4.1.2.1. Exposure corpus. As in Experiment 2, adults viewed an exposure corpus in
one of two counterbalanced sets (A and C), with ‘‘actions’’ in the exposure cor-
pus of set A serving as ‘‘part-actions’’ in the exposure corpus of set C, and vice
versa. A new randomized selection of small motion-elements to create ‘‘actions’’
and ‘‘part-actions’’ was undertaken in order to increase generalizability while
maintaining all other facets of the structure of the exposure corpus employed
in Experiment 2. ‘‘Actions’’ in set A of Experiment 3 were blow-insert-drink,
touch-poke-pour, peek-clink-rattle,and scrub-inspect-stack, and in set C were rat-
tle-blow-insert, drink-peek-clink, inspect-stack-touch, and poke-pour-scrub. The pri-
mary methodological change in Experiment 3 was that 28 different versions of
each small motion-element were filmed. Each time a small motion-element
appeared in the exposure corpus, it was a new version relative to all previously
viewed versions. Thus, the sequential probabilities of small motion-elements rep-
resented by ‘‘actions’’ and ‘‘part-actions’’ were the same as in Experiment 2 (an
overall average of 0.67 for adjacent small motion-elements within ‘‘part-actions’’,
and 1.0 for ‘‘actions’’), but these probabilities had to be tracked across categories
of different versions of each small motion-element.

The different versions of each small motion-element differed along a variety of
dimensions such as rate of motion, position of hand on the object(s), which
hand(s) was/were involved, overall body configuration, path of motion, and man-
ner of motion. Each of the 28 versions of all twelve small motion-elements were
filmed on the same occasion, making the lighting conditions and positions of
objects constant across all small motion-elements utilized in the experiment. Our
twofold goal in constructing the 28 versions of each small motion-element was
to (a) introduce enough variability among the different versions of a given small
motion-element that observers would be able to readily discriminate different ver-
sions from one another while at the same time (b) maintaining enough similarity
across versions that observers would be able to group the different versions of a
given small motion-element into a single small-motion category. To illustrate the
flavor of such variability, Fig. 5 depicts several of the different versions utilized
for four of the twelve small motion-elements.

If adults were to succeed in tracking sequential probabilities to discover seg-
mental structure within the exposure corpus in Experiment 3, this would indicate
that our second goal was met. To document that the first goal was met, however,
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we collected discrimination data. Adults were shown pairs of video clips in
sequence and asked to judge whether the two clips in a pair were the same or
different. Each pair depicted either (a) two different versions of a given small
motion-element or (b) the identical small motion-element video clip. Collecting
discrimination data for all possible same and different pairings of all 28 versions
of all 12 small motion-elements would be a prohibitively lengthy task for partic-
ipants. We thus randomly selected 10 video clips from each of the 28 versions of
each of the 12 small motion-elements to include in the discrimination task. These
10 video clips enabled us to include five ‘‘Different’’ trials for a given small
motion-element, and five ‘‘Same’’ trials were also constructed for each of the
twelve small motion-elements. In all, adults made same/different judgments on
120 trials across all of the 12 small motion-elements (10 judgments for each of
the 12 small motion-elements). As predicted, adults readily discriminated the dif-
ferent versions: they displayed an overall mean same/different accuracy rate of
94.3% (SD = 5.5), with a mean accuracy of 91.8% (SD = 11.6) for same trials
and 96.8% (SD = 3.3) for different trials. Mean accuracy rates across the 12 dif-
ferent small motion-elements were uniformly high (range: 87% (SD = 4.8) to 97%
(SD = 4.8).

4.1.2.2. Test stimuli. Test videotapes were constructed as in Experiment 2 (16 pairs
of test stimuli contrasted all possible combinations of the four ‘‘actions’’ with
four ‘‘part-actions’’) except that each of the four ‘‘action’’ test stimuli were com-
prised of different versions of the relevant small motion-elements, as were each of
the four ‘‘part-action’’ test stimuli. The small motion-elements utilized in each of

Fig. 5. Illustrative still-image examples of different versions of four of the small motion-element categories
utilized as stimuli in Experiment 3.
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the test stimuli were randomly selected from among those participants had seen
during their viewing of the exposure corpus. Thus the test stimuli probed partici-
pants’ ability to track sequential dependencies across categories of small motion-
elements, but, strictly speaking, did not test for their ability to generalize this
detection to an entirely new set of exemplars of those categories of small
motion-elements. As in Experiment 2, the order of ‘‘actions’’ versus ‘‘part-
actions’’ within test pairs (i.e., first vs. second) was counterbalanced across the
two test videotapes.

4.1.3. Procedure
The procedure was comparable to that of Experiment 2, with two exceptions.

Because of the considerably greater difficulty of the statistical learning task
involved in tracking sequential probabilities across categories of small motion-ele-
ments, participants were given a larger sample of the statistics before being tested.
This was accomplished by having them view the exposure corpus twice prior to
test. To avoid participants’ attention lagging during viewing of the doubled expo-
sure corpus, the presentation rate of the action stimuli was speeded, resulting in
doubled viewing of the exposure corpus lasting just over 20 min.3

4.2. Results and discussion

Adults were able to discover ‘‘action’’ segments within the Experiment 3 exposure
corpus despite being faced with discriminably different versions of each of the small
motion-elements comprising those ‘‘actions’’: In the post-test they selected ‘‘actions’’
more frequently than ‘‘part-actions’’ 62% of the time (SD = 17), a level significantly
greater than predicted by chance, one-sample t(15) = 2.8, p < .054 (see Fig. 4). Twelve
of the 16 participants selected ‘‘actions’’ more frequently than ‘‘part-actions’’ (on 9 or
more of the 16 test trials), which was significantly different from chance by the bino-
mial test, p < .05. No significant difference between sets A and C emerged in discrim-
inating ‘‘actions’’ from ‘‘part-actions’’ in this category-based statistical learning task.

3 Action speed was doubled via Macintosh iMovie software. Speeding of action resulted in action that
appeared rapid but not particularly unnatural. This was in part because action at the normal rate of
filming occurred at a leisurely pace. Prior to employing a speeded exposure corpus in Experiments 3 and 4,
participants’ ability to cope with speeded action was investigated employing the same stimuli that were
used in the first two experiments. Participants displayed the same level of skill at discriminating ‘‘actions’’
from ‘‘non-actions’’ and ‘‘part-actions’’ with the speeded exposure corpus as with the exposure corpus
presented at the normal filming rate, indicating that the speeded action presented little difficulty to
processing.
4 As described earlier, data from one participant in Experiment 3 were eliminated due to this

participant’s clearly outlying responses (an accuracy rate more than 2.5 standard deviations below the
mean). When this participant’s responses were included in parametric analyses, overall accuracy rates
(M = 58%, SD = 22) were no longer significantly greater than chance t(16) = 1.54, p = .14). Importantly,
however, when including this participant’s data, accuracy in selecting ‘‘actions’’ over ‘‘part-actions’’
remained significantly greater than predicted by chance in a non-parametric binomial test (p < .05), which
is not subject to the influence of extreme scores.
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The Experiment 3 findings clarify that adults are able to track statistical regular-
ities across small motion-elements exhibiting a substantial degree of surface variabil-
ity. This finding thus increases the plausibility that the segmentation-relevant
statistical learning skill tapped in these studies could cope with real-world
complexity.

5. Experiment 4

One additional important question concerning the findings of these experiments is
whether they genuinely index sensitivity to statistical structure within action. It is
conceivable that adults recoded the video clips into verbal labels – much as we have
done in labeling the clips in our examples – and tracked statistics across these linguis-
tic elements rather than across the video clips themselves. Of course, this would be a
new and interesting finding in its own right, but it would not be evidence for an abil-
ity to capitalize on segmentation-relevant statistical structure in dynamic action, per
se. To address this issue, we carried out an additional experiment parallel to Exper-
iment 2 (‘‘actions’’ versus ‘‘part-actions’’) with one addition: Adults were asked to
carry out a demanding linguistic task – verbally ‘‘shadowing’’ a story they were hear-
ing over headphones (repeating words aloud as quickly as possible after hearing
them; Cherry, 1953) – during the entire time they viewed the exposure corpus of
dynamic action. Prior research has documented that shadowing strongly interferes
with the recoding of visual information into verbal form (e.g., Besner, Davies, &
Daniels, 1981; Estes, 1973; Levy, 1971; Murray, 1967; Posner, Early, Reiman, Pardo,
& Dhawan, 1988; Wood & Cowan, 1995). The shadowing technique continues to be
used in current research to isolate processes such as the transfer of information to
visual (as opposed to verbal) working memory (e.g., Schmidt, Vogel, Woodman,
& Luck, 2002). The shadowing task selected for the present research was a very
demanding one – shadowing a rapidly unfolding narrative delivered by a narrator
speaking with a pronounced British accent (which presented a unique challenge to
our North American participants). Thus, adults who were shadowing while watching
the exposure corpus should lack the attentional resources needed to phonologically
recode the motion elements in that corpus into verbal labels.

5.1. Methods

5.1.1. Participants
Twenty-four undergraduates (17 female, 7 male; set A: 8 female and 4 male; set B:

9 female and 3 male) received course credit for participation in the research.

5.1.2. Materials
Exposure corpora and test stimuli employed were comparable to those in Exper-

iment 2 involving discrimination between ‘‘actions’’ and ‘‘part-actions,’’ except that
the small motion-element combinations comprising ‘‘actions’’ and ‘‘part-actions’’
were those utilized in Experiment 3 (that is, ‘‘actions’’ in set A were blow-insert-drink,
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touch-poke-pour, peek-clink-rattle, scrub-inspect-stack, and in set C were rattle-blow-
insert, drink-peek-clink, inspect-stack-touch, and poke-pour-scrub).5 The video clips
used were the same as those in Experiment 2. The shadowed story employed in
Experiment 4 was ‘‘Charlie and the Chocolate Factory’’ narrated by the author,
Roald Dahl, speaking in British-accented English (Dahl, 1975). The mean narration
rate for the story was 163.5 words per minute.

5.1.3. Procedure
The same procedure was employed as in Experiment 3, except that adults shad-

owed a story while viewing the exposure corpus. In particular, as in Experiment 3,
participants viewed the exposure corpus twice to compensate for the increased chal-
lenge introduced by shadowing. Regarding the shadowing, participants were asked
to repeat words as quickly as they could after hearing them. Participants’ shadowing
was audiotaped and subsequently double-checked to ensure that it occurred
throughout viewing of the exposure corpus.

5.2. Results and discussion

As in our previous experiments, those who carried out the shadowing task while
viewing the exposure corpus selected the ‘‘actions’’ (M = 58%, SD = 15) in the test
phase significantly more frequently than predicted by chance (one sample
t(23) = 2.3, p < .05) (see Fig. 4), with no significant difference in performance
between sets A and C. Seventeen of the 24 participants selected ‘‘actions’’ more often
than ‘‘part-actions’’ in the test phase (i.e., on nine or more of the 16 test trials), which
was significantly different from chance by a binomial test, p < .05. Participants’ abso-
lute level of ‘‘action’’ selection was significantly lower than that of adults in Exper-
iment 2 who did not shadow (M = 72%, SD = 24), independent samples t(46) = 2.7,
p < .05, but this is unsurprising given that shadowers were faced with carrying out
two challenging processing tasks simultaneously while non-shadowers contended
with only one of these tasks. Others have documented analogous decrements in
detection of statistical regularities in a dual-task context in the language domain
(e.g., Toro, Sinnett, & Soto-Faraco, 2005) and the visual domain (e.g., Turk-Browne
et al., 2005). The crucial finding for present purposes is that shadowers were sensitive
to sequential probabilities within the motion stream that provide clues to segmenta-
tion even when linguistic resources for recoding of small motion-elements into verbal
labels were unavailable to assist in extracting action segments. Their success in dis-

5 One error was belatedly detected in the exposure corpus observed by participants in Condition C of
Experiment 4. In particular, on two of the 28 occasions when participants were supposed to view the
‘‘action’’ poke-pour-scrub they were mistakenly shown scrub-pour-poke instead. Both of these errors
occurred relatively early in the exposure corpus (the 7th and 14th ‘‘actions’’ viewed in the series). The
exposure corpus of condition A did not include this error. Interestingly, this error should have made the
‘‘actions’’ even more difficult to detect than had no such error been present, yet participants were able to
discriminate the statistically-based ‘‘actions’’ from ‘‘part-actions’’ despite this inadvertently-introduced
random variability.

1400 D. Baldwin et al. / Cognition 106 (2008) 1382–1407



criminating ‘‘actions’’ that were solely statistically defined was striking given that the
statistics involved had to be tracked while they were simultaneously dealing with the
challenging shadowing task.

In sum, Experiment 4 clarified that recoding of small motion-elements into verbal
labels was not the sole source of adults’ success at tracking statistics within the
stream of dynamic action. Rather, adults directly detected statistical structure within
dynamic intentional action and used it as a source of information for discriminating
higher-level segments (‘‘actions’’) from motion combinations that violated the seg-
mental structure of the behavior stream (‘‘part-actions’’).

6. General discussion

The experiments reported here confirm that adults can discover sequential
probabilities within dynamic intentional activity that support extraction of
higher-level action segments. Adults displayed such skill even in the face of sub-
stantial surface variability in the low-level segments over which statistics were
tracked, and they accomplished this even when use of a linguistic recoding strat-
egy was drastically undercut. These studies offer among the first pieces of evi-
dence illuminating a potential mechanism underlying segmentation of dynamic
human action.

To ensure that sequential probabilities were the only possible basis for segmenta-
tion, we took steps (e.g., use of digitized video and a standard transition from one
video clip to the next, random selection of motion element combinations in the con-
struction of the exposure corpus) to systematically eliminate both (a) top–down
sources of information about intentions, goals, and causes that might guide discov-
ery of higher-level segments, as well as (b) other possible structural clues to coarse-
grained segmentation of the motion stream except sequential probabilities. Further-
more, we included an important control that confirms that top–down knowledge of
intentions, goals, and causes was not the source of adults’ ability to discover the
‘‘actions’’ within the exposure corpus. That is, the motion-elements comprising
‘‘actions’’ that one group of participants had the opportunity to extract via sequen-
tial probabilities served as the foil ‘‘non-actions’’ (Experiment 1) or ‘‘part-actions’’
(Experiments 2-4) that other participants encountered. Participants’ ability to extract
the ‘‘actions’’ regardless of which set of motion elements were involved clarifies that
sequential probabilities drove accurate selection of ‘‘action’’ segments over ‘‘non-
actions’’ or ‘‘part-actions’’; inherent causal/intentional meaningfulness of the motion
element combinations comprising those ‘‘actions’’ could not have been the source of
adults’ accuracy. Thus the present findings specifically demonstrate adults’ ability to
exploit sequential probabilities that enable discovery of higher-level segments not
otherwise detectable within a stream of behavior.

It is noteworthy that adults in the present research were given access to only a
small sample of the segmentation-relevant statistics (in Experiments 1 and 2 only
28 exposures to each ‘‘action’’ relative to 80 or more exposures to the relevant seg-
ments in analogous language segmentation research). Nevertheless, they accurately
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discriminated ‘‘actions’’ from ‘‘non-actions’’ and ‘‘part-actions,’’ revealing clearcut
sensitivity to the sequential probabilities inherent in the exposure corpus.

Our findings should in no way be taken to indicate that action segmentation in the
every day setting reduces to statistically-driven detection of segment boundaries.
Rather, we believe that action segmentation in the real world is likely the joint prod-
uct of numerous mechanisms – both knowledge of intentions, goals, causes, and
action propensities as well as a suite of other mechanisms involving structural knowl-
edge and sensitivity to bottom–up clues. However, by eliminating the possible oper-
ation of such other mechanisms, the present research provides the first direct
evidence that statistical learning is one mechanism adults can exploit to facilitate
action segmentation. That said, an important direction for future research will be
to investigate how mechanisms such as statistical learning may be deployed in richer,
more meaningful real-world contexts to subserve action processing.

The statistical learning paradigm we employed in these studies provides evidence
that adults can track sequential probabilities relevant to initial discovery of higher-
level segments within a novel sequence of activity. These findings do not, however,
directly clarify whether adults utilize sequential probabilities to drive their on-line
segmentation of dynamic human action. This remains a question for future investi-
gation. Techniques pioneered by others for investigating this question in other
domains (e.g., Hunt & Aslin, 2001; Olsen & Chun, 2001;Turk-Browne et al., 2005)
can be brought to bear in future research investigating statistical learning in the
action domain. That said, Swallow and Zacks’ (submitted for publication) recent
work increases the plausibility that statistical learning may benefit on-line segmenta-
tion in the action domain. They showed adults arbitrary sequences of animated still-
frames depicting novel hand gestures, and found that sensitivity to statistical regular-
ities within the sequences guided adults’ on-line attentional deployment during pro-
cessing. Although Swallow and Zacks’ studies did not involve actual dynamic action,
their findings clearly document that statistical learning with action-approximating
static stimuli have implications for on-line processing.

Our findings and those of Swallow and Zacks nicely complement one another in
yet another respect. In contrast to Swallow and Zacks, the intentional action
sequences we utilized in the present research involved motion elements that are
non-arbitrary, in the sense that observers would have a sense of the purpose or goal
of each individual motion element (it was the combinations of these elements that
were novel and not inherently meaningful). Thus, together the present findings
and those of Swallow and Zacks clarify that statistical learning supports observers’
extraction of more coarse-grained segments from within a behavior stream, irrespec-
tive of the arbitrariness of the motion elements comprising that motion stream.

6.1. Coping with real-world complexity

One of the strengths of the present research is the use of video of an actual human
carrying out a physically possible yet novel sequence of everyday intentional action.
These findings thus convincingly extend statistical learning skills to the realm of
dynamic action stimuli. At the same time, there are significant reasons for caution
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at this early phase in generalizing the present findings to segmentation of everyday
action in the real-world. For one, it is important to recognize that, in everyday
action, statistical regularities are likely probabilistically supplemented by other struc-
tural clues to action segments, such as acceleration and deceleration regularities that
coincide with segments (e.g., Loucks & Baldwin, 2006; Zacks, 2004), increases in
movement change (e.g., Hard et al., under review; Newtson et al., 1977), and occa-
sional pauses. In particular, research by Hard and colleagues (Hard et al., in press)
indicates that movement change is greater at points within the motion stream that
observers identify as boundaries between distinct acts. Moreover, in the motion sce-
narios they have investigated, movement change appears to be greatest at boundaries
between coarse-grain action segments relative to fine-grained segment boundaries.
These findings hint that observers may track movement change to help in detecting
action segments, and possibly even to guide hierarchical organization nesting fine-
grained action segments within coarse-grained segments. However, the extent to
which adults actually rely on such additional clues is not yet known. Investigation
of this question and other such questions (e.g., how the variety of structural clues
are integrated with one another, and with expectancies based on causal/intentional
knowledge) are important avenues for future research.

Statistical regularities likely abound in dynamic intentional action, and this
research confirms adults’ sensitivity to such structure. Yet very little is known about
details of the actual regularities to be found within everyday intentional action. Ulti-
mately, it will be important to characterize the statistical structure in the natural
world in order to fully understand how effectively statistical learning-skills can sup-
port segmentation in the context of real-world complexity. One thing is clear, how-
ever: real-world statistical regularities are more complex than those exhibited in the
corpus of action adults observed in the present research. It is thus not entirely certain
whether the statistical-tracking skills adults demonstrated in the present studies are
powerful enough to support action segmentation in the context of real-world statis-
tical complexity, or what size of learning corpus would be needed for segments to be
extracted given such complexity. Three points alleviate this concern, at least to some
degree. First, adults detected entirely novel and inherently meaningless motion com-
binations after observing only a small sample of these combinations, and they were
able to do so even when engaged in linguistic shadowing, a resource-intensive cogni-
tive/linguistic task. This points to statistical-tracking skills that are rapid and pow-
erful. Second, Experiment 3 confronted adults with a substantially increased level of
complexity, in that adults could discover higher-level ‘‘action segments’’ only if they
could track sequential probabilities across categories of small motion-elements, the
exemplars of which varied considerably on a range of surface characteristics. Adults
readily accomplished segmentation in the context of such complexity despite the rel-
atively small statistical sample.

Finally, another possible reason for caution in generalizing our findings to every-
day action processing relates to the specifics of the action stimuli we presented to
participants. For reasons already described, we constructed a stream of behavior
in which small motion-elements all began and ended with the actor in the same, neu-
tral position. Hence the return to neutral position potentially demarcated clearcut
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boundaries between each of the small motion-elements. The stream of dynamic
activity was thus readily segmentable for participants at the fine-grained level of
the small motion-element, thereby facilitating their ability to detect sequential depen-
dencies among these small motion-elements. While this design feature in no way
invalidates the findings, one might question the extent to which everyday intentional
action is similarly segmentable at the fine-grained level. If it is not, the statistical
tracking mechanism we have showcased would have little opportunity to operate.
Almost certainly, small motion-elements in the everyday setting do not come as
neatly packaged by a single, salient, return-to-neutral boundary cue as the motion
stream that participants experienced in this research. On the other hand, recent
research suggests that fine-grained segments like the small motion-elements we pre-
sented to participants may indeed be highly available segments within intentional
action, thus setting the stage for learning of sequential dependencies among such ele-
ments. For example, Zacks (2004) found that adults’ segmentation judgments at the
fine-grained level correlate especially highly with a cluster of movement features such
as acceleration magnitude and speed. Moreover, when adults view intentional action
in point-light format – which retains structure-in-motion but minimizes contextual
information – their memory displays the influence of segmentation at the fine-
grained level but not at the coarse-grained level (Baldwin et al., in preparation).
Also, infants readily segment intentional action at the fine-grained level (Baldwin
et al., 2001; Saylor et al., 2007) and can do so even when action is displayed in
point-light format (Baldwin et al., in preparation). All in all, then, at this early phase
there is at least some basis on which to speculate that the statistical tracking skills
highlighted in the present research could well support the discovery of higher-level
action segments in everyday action processing.

6.2. Broader implications

Quite possibly, sensitivity to statistical regularities within the human motion
stream may also support aspects of action processing other than segmentation.
For example, some have suggested that different types of motion/action, such as ani-
mate versus inanimate motion, intentional versus unintentional action, and diverse
types of intentional acts (e.g., helping vs. hindering) (e.g., Blythe, Todd, & Miller,
1999; Mandler, 1988; Premack & Premack, 1995) are distinguishable via systematic
structural differences. If this is correct, sensitivity to structural regularities could aid
adults’ rapid, automatic recognition of highly-relevant event distinctions within the
motion stream as well as facilitating action segmentation.

The present findings highlight a striking parallel between intentional action pro-
cessing and processing in other cognitive/perceptual domains, such as language.
Using a methodology developed by Saffran and colleagues that demonstrated reliance
on statistical structure for language segmentation, we obtained comparable findings
that adults can segment novel action sequences via sequential probabilities. As briefly
alluded to earlier, additional research documents similar statistical tracking in yet
other domains, such as in processing of non-linguistic tone sequences and complex
spatial arrays. Thus it seems likely that cognitive/perceptual systems for processing
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language, action, and these other kinds of stimuli all recruit one and the same statis-
tical tracking mechanism to facilitate segmentation. Many specific details concerning
this domain-general learning mechanism remain as yet unresolved (e.g., Perruchet &
Pacton, 2006). In any case, however, the current findings further underscore the
importance of pursuing investigation of domain-general experience-dependent mech-
anisms that operate across distinct knowledge systems. At the same time, constraints
on statistical computations may well emerge that are specific to the action domain or
to certain aspects of action processing, as seems to be the case for statistical learning
with linguistic stimuli (e.g., Bonatti, Peña, Nespor, & Mehler, 2005; Saffran & Thies-
sen, 2003) as well as simple visual shapes (e.g., Baker, Olson, & Behrmann, 2004).

6.3. Conclusion

Skill at identifying distinct acts within others’ continuously flowing behavior is
fundamental to everyday social and cognitive functioning. Yet action is complex –
dynamic, evanescent, and largely continuous. How we accomplish segmentation of
action in the face of such complexity is a basic question for cognitive science
research. The experiments reported here demonstrate that adults can register statis-
tical regularities that provide clues to action segmentation. In particular, adults
tracked sequential probabilities among fine-grained actions (small motion-elements)
to identify more coarse-grained segments of action within a novel sequence of inten-
tional activity. This finding provides some of the first evidence to date about mech-
anisms that enable discovery of segments within dynamic human action, and, for the
first time, documents a potential role for structural knowledge in action processing.
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